Skip to main content

Toward a Kinetic Framework to Model the Collective Dynamics of Multi-agent Systems

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning (ISoLA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13703))

Included in the following conference series:

Abstract

The investigation of the collective dynamics of multi-agent systems in terms of the study of the properties of single agents is not feasible when the number of interacting agents is large. In this case, the collective dynamics can be better examined by adopting a statistical approach that studies the long-time asymptotic properties of the system as a whole. The kinetic framework discussed in this paper can be used to study collective and emergent properties of large and decentralized multi-agent systems once single interactions among agents are properly described. Moreover, the discussed framework can be used to design how agents should interact to ensure that the resulting multi-agent system would exhibit the required collective and emergent characteristics. The discussed framework restricts the interactions among agents to message exchanges, and it assumes that the investigated properties emerge from interactions. As an example of the use of the framework, and to outline a concrete application of it, the properties of a system in which agents implement the symmetric gossip algorithm are analyzed. Analytic results obtained using the discussed framework are compared with independent simulations, showing the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adiga, A., Kuhlman, C.J., Mortveit, H.S., Vullikanti, A.K.S.: Sensitivity of diffusion dynamics to network uncertainty. J. Artif. Intell. Res. 51, 207–226 (2014)

    Article  MathSciNet  Google Scholar 

  2. Asensio-Marco, C., Beferull-Lozano, B.: Fast average gossiping under asymmetric links in WSNS. In: Proceedings of the \(22^{\rm nd }\) European Signal Processing Conference (EUSIPCO 2014), pp. 131–135. IEEE (2014)

    Google Scholar 

  3. Bakhshi, R., Cloth, L., Fokkink, W., Haverkort, B.: Mean-field analysis for the evaluation of gossip protocols. In: Proceedings of \(6^{\rm th}\) International Conference on the Quantitative Evaluation of Systems (QEST 2009), pp. 247–256. IEEE (2009)

    Google Scholar 

  4. Bellomo, N., et al.: What is life? A perspective of the mathematical kinetic theory of active particles. Math. Models Methods Appl. Sci. 31(9), 1821–1866 (2021)

    Article  MathSciNet  Google Scholar 

  5. Bellouquid, A., Delitala, M.: Mathematical Modeling of Complex Biological Systems. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  6. Bergenti, F., Ricci, A.: Three approaches to the coordination of multiagent systems. In: Proceedings of the ACM Symposium on Applied Computing (SAC 2002), pp. 367–372. ACM (2002)

    Google Scholar 

  7. Bianca, C., Dogbe, C.: On the Boltzmann gas mixture equation: Linking the kinetic and fluid regimes. Commun. Nonlinear Sci. Numer. Simul. 29, 240–256 (2015)

    Article  MathSciNet  Google Scholar 

  8. Boghosian, B.M.: Kinetics of wealth and the Pareto law. Phy. Rev. E 89(4), 042804 (2014)

    Article  Google Scholar 

  9. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013)

    Article  Google Scholar 

  10. Boudec, J.Y., McDonald, D., Mundinger, J.: A generic mean field convergence result for systems of interacting objects. In: Proceedings of the \(4^{\rm th }\) International Conference on the Quantitative Evaluation of Systems (QEST 2007). IEEE (2007)

    Google Scholar 

  11. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans. Inf. Theor. 52(6), 2508–2530 (2006)

    Article  MathSciNet  Google Scholar 

  12. van den Broek, B., Wiegerinck, W., Kappen, B.: Graphical model inference in optimal control of stochastic multi-agent systems. J. Artif. Intell. Res. 32, 95–122 (2008)

    Article  Google Scholar 

  13. Bures, T., et al.: A life cycle for the development of autonomic systems: the e-mobility showcase. In: Proceedings of the \(7^{\rm th }\) IEEE International Conference on Self-Adaptation and Self-Organizing Systems Workshops (SASOW 2013), pp. 71–76 (2013)

    Google Scholar 

  14. Castelli, G., Mamei, M., Rosi, A., Zambonelli, F.: Engineering pervasive service ecosystems: The SAPERE approach. ACM Trans. Auton. Adapt. Syst. 10(1), 1:1–1:27 (2015)

    Google Scholar 

  15. Chakrabarti, B.K., Chakraborti, A., Chatterjee, A.: Econophysics and Sociophysics: Trends and Perspectives, Wiley, Hoboken (2006)

    Book  Google Scholar 

  16. De Nicola, R., Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adaptive systems: special section. Int. J. Softw. Tools Technol. Transf. 22, 389–397 (2020)

    Article  Google Scholar 

  17. Fagnani, F., Zampieri, S.: Asymmetric randomized gossip algorithms for consensus. IFAC Proc. Volumes 41(2), 9052–9056 (2008)

    Article  Google Scholar 

  18. Fagnani, F., Zampieri, S.: Randomized consensus algorithms over large scale networks. IEEE J. Sel. Areas Commun. 26(4), 634–649 (2008)

    Article  Google Scholar 

  19. Galam, S.: Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena. Understanding Complex Systems, Springer, Cham (2012)

    Book  Google Scholar 

  20. Garcia, A.F., de Lucena, C.J.P., Zambonelli, F., Omicini, A., Castro, J. (eds.): Software Engineering for Large-Scale Multi-Agent Systems, Research Issues and Practical Applications. Lecture Notes in Computer Science, vol. 2603. Springer, Cham (2002). https://doi.org/10.1007/3-540-35828-5

  21. Goldman, C.V., Zilberstein, S.: Decentralized control of cooperative systems: categorization and complexity analysis. J. Artif. Intell. Res. 22, 143–174 (2004)

    Article  MathSciNet  Google Scholar 

  22. Hillston, J., Pitt, J., Wirsing, M., Zambonelli, F.: Collective adaptive systems: qualitative and quantitative modelling and analysis. Dagstuhl Rep. 4(12), 68–113 (2014)

    Google Scholar 

  23. Huhns, M.N. (ed.): Distributed Artificial Intelligence. Pitman Publishing, London (1987)

    MATH  Google Scholar 

  24. Kash, I.A., Friedman, E.J., Halpern, J.Y.: Multiagent learning in large anonymous games. J. Artif. Intell. Res. 40, 571–598 (2011)

    Article  MathSciNet  Google Scholar 

  25. Liboff, R.L.: Kinetic Theory: Classical, Quantum, and Relativistic Descriptions. Springer, Cham (2003). https://doi.org/10.1007/b97467

    Book  Google Scholar 

  26. Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  27. Mariani, S., Cabri, G., Zambonelli, F.: Coordination of autonomous vehicles: taxonomy and survey. ACM Comput. Surv. 54(1), 19:1–19:33 (2021)

    Google Scholar 

  28. Mitchell, M.: Complex systems: network thinking. Artif. Intell. 170, 1194–1212 (2006)

    Article  MathSciNet  Google Scholar 

  29. Monica, S., Bergenti, F.: An analytic study of opinion dynamics in multi-agent systems with additive random noise. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 105–117. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-1_9

    Chapter  MATH  Google Scholar 

  30. Monica, S., Bergenti, F.: An analytic study of opinion dynamics in multi-agent systems with additive random noise. Comput. Math. Appl. 73(10), 2272–2284 (2017)

    Article  MathSciNet  Google Scholar 

  31. Monica, S., Bergenti, F.: Opinion dynamics in multi-agent systems: Selected analytic models and verifying simulations. Computational & Mathematical Organization Theory 23(3), 423–450 (2017)

    Article  Google Scholar 

  32. Pareschi, L., Toscani, G.: Interacting Multiagent Systems: Kinetic Equations and Montecarlo Methods. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  33. Pynadath, D.V., Tambe, M.: The communicative multiagent team decision problem: analyzing teamwork theories and models. J. Artif. Intell. Res. 16, 389–423 (2002)

    Article  MathSciNet  Google Scholar 

  34. Schweitzer, F.: Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences. Springer, Synergetics (2003). https://doi.org/10.1007/978-3-540-73845-9

    Book  MATH  Google Scholar 

  35. Slanina, F.: Inelastically scattering particles and wealth distribution in an open economy. Phy. Rev. E 69, 46–102 (2004)

    Article  Google Scholar 

  36. Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod. Phy. C 11, 1157–1166 (2000)

    Article  Google Scholar 

  37. Thurner, S., Klimek, P., Hanel, R.: Introduction to the Theory of Complex Systems. Oxford University Press, Oxford (2018)

    Book  Google Scholar 

  38. Weidlich, W.: Sociodynamics: A Systematic Approach to Mathematical Modelling in the Social Sciences. Harwood Academic Publisher, Reading (2000)

    Google Scholar 

  39. Wolpert, D.H., Tumer, K.: Collective intelligence, data routing and Braess’ paradox. J. Artif. Intell. Res. 16, 359–387 (2002)

    Article  MathSciNet  Google Scholar 

  40. Ygge, F., Akkermans, H.: Decentralized markets versus central control: a comparative study. J. Artif. Intell. Res. 11, 301–333 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

Work supported by the Italian MUR PRIN 2017 Project Fluidware.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Zambonelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Monica, S., Bergenti, F., Zambonelli, F. (2022). Toward a Kinetic Framework to Model the Collective Dynamics of Multi-agent Systems. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning. ISoLA 2022. Lecture Notes in Computer Science, vol 13703. Springer, Cham. https://doi.org/10.1007/978-3-031-19759-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19759-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19758-1

  • Online ISBN: 978-3-031-19759-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics