Skip to main content

Nutritional Approaches to Reduce Enteric Methane Emission from Ruminants

  • Chapter
  • First Online:
Technology for Environmentally Friendly Livestock Production

Abstract

The aim of this chapter is to summarize dietary measures to mitigate methane at animal level. The chapter briefly summarizes methane measurement techniques. The focus is on the mitigation potential studied in vivo, but when such data were not available, in vitro measurements were included. The chapter covers main dietary ingredients such as forage quality, inclusion of concentrate, grazing management and inclusion of primary (e.g. lipids) and secondary (e.g. tannins) plant compounds as well as chemical inhibitors (e.g. 3-NOP) to the diet. This chapter can be used as a guidance on what to use, at which concentrations in the diets levels (farmers) and how to quantify the effect (researchers).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abecia, L., Toral, P. G., Martín-García, A. I., Tomkins, N. W., Molina-Alcaide, E., Newbold, C. J., & Yáñez-Ruiz, D. R. (2012). Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats. Journal of Dairy Science, 95(4), 2027–2036.

    Article  CAS  PubMed  Google Scholar 

  • Adegbeye, M. J., Elghandour, M. M., Monroy, J. C., Abegunde, T. O., Salem, A. Z., Barbabosa- Pliego, A., & Faniyi, T. O. (2019). Potential influence of Yucca extract as feed additive on greenhouse gases emission for a cleaner livestock and aquaculture farming – A review. Journal of Cleaner Production, 239, 118074.

    Article  Google Scholar 

  • Alstrup, L., Hellwig, A. L. F., Lund, P., & Weisbjerg, M. R. (2015). Effect of fat supplementation and stage of lactation on methane production in dairy cows. Animal Feed Science and Technology, 207, 10–19. https://doi.org/10.1016/j.anifeedsci.2015.05.017

    Article  CAS  Google Scholar 

  • Alvarez-Hess, P. S., Williams, S. R. O., Jacobs, J. L., Hannah, M. C., Beauchemin, K. A., Eckard, R. J., & Moate, P. J. (2019). Effect of dietary fat supplementation on methane emissions from dairy cows fed wheat or corn. Journal of Dairy Science, 102(3), 2714–2723. https://doi.org/10.3168/jds.2018-14721

    Article  CAS  PubMed  Google Scholar 

  • Alves, T. P., Dall-Orsoletta, A. C., & Ribeiro-Filho, H. M. N. (2017). The effects of supplementing Acacia mearnsii tannin extract on dairy cow dry matter intake, milk production, and methane emission in a tropical pasture. Tropical Animal Health and Production, 49, 1663–1668.

    Article  PubMed  Google Scholar 

  • Anele, U. Y., Yang, W. Z., McGinn, P. J., Tibbetts, S. M., & McAllister, T. A. (2016). Ruminal in vitro gas production, dry matter digestibility, methane abatement potential, and fatty acid biohydrogenation of six species of microalgae. Canadian Journal of Animal Science, 96, 354–363. https://doi.org/10.1139/cjas-2015-014

    Article  CAS  Google Scholar 

  • Archimède, H., Eugène, M., Marie-Magdeleine, C., Boval, M., Martin, C., Morgavi, D. P., Lecomte, P., & Doreau, M. (2011). Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology, 166–167, 59–64.

    Article  Google Scholar 

  • Archimède, H., Rira, M., Eugène, M., Fleury, J., Laste, M. L., Periacarpin, F., Silou-Etienne, T., Morgavi, D. P., & Doreau, M. (2018). Intake, total-tract digestibility and methane emissions of Texel and Blackbelly sheep fed C4 and C3 grasses tested simultaneously in a temperate and a tropical area. Journal of Cleaner Production, 185, 455–463.

    Article  Google Scholar 

  • Arndt, C., Hristov, A. N., Price, W. J., McClelland, S. C., Pelaez, A. M., Cueva, S. F., Oh, J., Bannink, A., Bayat, A. R., Crompton, L. A., Dijkstra, J., Eugene, M. A., Enahoro, D., Kebreab, E., Kreuzer, M., McGee, M., Martin, C., Newbold, C. J., Reynolds, C. K., Schwarm, A., Shingfield, K. J., Veneman, J. B., Yanez-Ruiz, D. R., Yu, Z. (2022). Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help the 1.5 °C target by 2030 but not 2050. PNAS (in press).

    Google Scholar 

  • Arthur, P. F., Barchia, I. M., Weber, C., Bird-Gardiner, T., Donoghue, K. A., Herd, R. M., & Hegarty, R. S. (2017). Optimizing test procedures for estimating daily methane and carbon dioxide emissions in cattle using short-term breath measures. Journal of Animal Science, 95, 645–656. https://doi.org/10.2527/jas.2016.0700

    Article  CAS  PubMed  Google Scholar 

  • Bayat, A. R., Ventto, L., Kairenius, P., Stefanski, T., Leskinen, H., Tapio, I., & Shingfield, K. J. (2017). Dietary forage to concentrate ratio and sunflower oil supplement alter rumen fermentation, ruminal methane emissions, and nutrient utilization in lactating cows. Translational Animal Science, 1(3), 277–286. https://doi.org/10.2527/tas2017.0032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayat, A. R., Tapio, I., Vilkki, J., Shingfield, K. J., & Leskinen, H. (2018). Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. Journal of Dairy Science, 101(2), 1136–1151.

    Article  CAS  PubMed  Google Scholar 

  • Bay-Larsen, I., Risvoll, C., Vestrum, I., & Bjørkhaug, H. (2018). Local protein sources in animal feed – Perceptions among arctic sheep farmers. Journal of Rural Studies, 59, 98–110. https://doi.org/10.1016/j.jrurstud.2018.02.004

    Article  Google Scholar 

  • Beauchemin, K. A., Kreuzer, M., O’Mara, F., & McAllister, T. A. (2008). Nutritional management for enteric methane abatement: A review. Australian Journal of Experimental Agriculture, 48, 21–27. https://doi.org/10.1071/EA07199

    Article  CAS  Google Scholar 

  • Belanche, A., Pinloche, E., Preskett, D., & Newbold, C. J. (2016). Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiology Ecology, 92(1).

    Google Scholar 

  • Belanche, A., Newbold, C. J., Morgavi, D. P., Bach, A., Zweifel, B., & Yáñez-Ruiz, D. R. (2020). A meta-analysis describing the effects of the essential oils blend Agolin Ruminant on performance, rumen fermentation and methane emissions in dairy cows. Animals, 10(4), 620.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benchaar, C., & Greathead, H. (2011). Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Animal Feed Science and Technology, 166-167, 338–355. https://doi.org/10.1016/j.anifeedsci.2011.04.024

    Article  CAS  Google Scholar 

  • Boadi, D., Benchaar, C., Chiquette, J., & Masse, D. (2004). Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian Journal of Animal Science, 84(3), 319–335. https://doi.org/10.4141/a03-109

    Article  Google Scholar 

  • Borreani, G., Giaccone, D., Mimosi, A., & Trabacco, E. (2007). Comparison of hay and haylage from permanent alpine meadows in winter dairy cow diets. Journal of Dairy Science, 90(12), 5643–5650. https://doi.org/10.3168/jds.2007-0134

    Article  CAS  PubMed  Google Scholar 

  • Børsting, C. F., Brask, M., Hellwing, A. L. F., Weisbjerg, M. R., & Lund, P. (2020). Enteric methane emission and digestion in dairy cows fed wheat and molasses. Journal of Dairy Science, 103, 1448–1462. https://doi.org/10.3168/jds.2019-16655

    Article  CAS  PubMed  Google Scholar 

  • Cameron, L., Chagunda, M. G. G., Roberts, D. J., & Lee, M. A. (2018). A comparison of milk yields and methane production from three contrasting high-yielding dairy cattle feeding regimes: Cut-and-carry, partial grazing and total mixed ration. Grass and Forage Science, 73(3), 789–797. https://doi.org/10.1111/gfs.12353

    Article  CAS  Google Scholar 

  • Cao, Y., Takahashi, T., Horiguchi, K., Yoshida, N., & Cai, Y. (2010). Methane emissions from sheep fed fermented or non-fermented total mixed ration containing whole-crop rice and rice bran. Animal Feed Science and Technology, 157(72), 8. https://doi.org/10.1016/j.anifeedsci.2010.02.004

    Article  CAS  Google Scholar 

  • Chagas, J. C., Ramin, M., & Krizsan, S. J. (2019). In vitro evaluation of different dietary methane mitigation strategies. Animals, 9(12), 1120. https://doi.org/10.3390/ani9121120

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Harstad, O. M., McAllister, T., Dörsch, P., & Holo, H. (2020). Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro. Acta Agriculturae Scandinavica, Section A—Animal Science, 69(3), 169–175. https://doi.org/10.1080/09064702.2020.1737215

    Article  CAS  Google Scholar 

  • Cherdthong, A., Khonkhaeng, B., Foiklang, S., Wanapat, M., Gunun, N., Gunun, P., & Polyorach, S. (2019). Effects of supplementation of Piper sarmentosum leaf powder on feed efficiency, rumen ecology and rumen protozoal concentration in Thai native beef cattle. Animals, 9(4), 130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chipperfield, M. P., Hossaini, R., Montzka, S. A., Reimann, S., Sherry, D., & Tegtmeier, S. (2020). Renewed and emerging concerns over the production and emission of ozone-depleting substances. Nature Reviews Earth & Environment, 1, 251–263. https://doi.org/10.1038/s43017-020-0048-8

    Article  Google Scholar 

  • Cieslak, A., Zmora, P., Stochmal, A., Pecio, L., Oleszek, W., Pers-Kamczyc, E., Szczechowiak, J., Nowak, A., & Szumacher-Strabel, M. (2014). Rumen antimethanogenic effect of Saponaria officinalis L. phytochemicals in vitro. The Journal of Agricultural Science, 152(6), 981–993. https://doi.org/10.1017/S0021859614000239

    Article  CAS  Google Scholar 

  • Croteau, R., Kutchan, T. M., & Lewis, N. G. (2000). Natural products (Secondary metabolites). In B. Buchanan, W. Gruissem, & R. Jones (Eds.), Biochemistry & molecular biology of plants (pp. 1250–1318). American Society of Plant Physiologists.

    Google Scholar 

  • Dall-Orsoletta, A. C., Almeida, J. G. R., Carvalho, P. C. F., Savian, J. V., & Ribeiro-Filho, H. M. N. (2016). Ryegrass pasture combined with partial total mixed ration reduces enteric methane emissions and maintains the performance of dairy cows during mid to late lactation. Journal of Dairy Science, 99(6), 4374–4383. https://doi.org/10.3168/jds.2015-10396

    Article  CAS  PubMed  Google Scholar 

  • Deighton, M. H., Williams, S. R. O., Hannah, M. C., Eckard, R. J., Boland, T. M., Wales, W. J., & Moate, P. J. (2014). A modified sulphur hexafluoride tracer technique enables accurate determination of enteric methane emissions from ruminants. Animal Feed Science and Technology, 197, 47–63. https://doi.org/10.1016/j.anifeedsci.2014.08.003

    Article  CAS  Google Scholar 

  • Demarchi, J. J. A. A., Manella, M. Q., Primavesi, O., Frighetto, R. S. T., Romero Solorzano, L. A., Berndt, A., & Lima, M. A. (2016). Effect of seasons on enteric methane emissions from cattle grazing Urochloa brizantha. The Journal of Agricultural Science, 8, 1–10. https://doi.org/10.5539/jas.v8n4p106

    Article  Google Scholar 

  • Dijkstra, J., Bannink, A., France, J., Kebreab, E., & van Gastelen, S. (2018). Short communication: Antimethanogenic effects of 3-nitrooxypropanol depend on supplementation dose, dietary fiber content, and cattle type. Journal of Dairy Science, 101(10), 9041–9047. https://doi.org/10.3168/jds.2018-14456

    Article  CAS  PubMed  Google Scholar 

  • Duin, E. C., Wagner, T., Shima, S., Prakash, D., Cronin, B., Yáñez-Ruiz, D. R., Duval, S., Rümbeli, R., Stemmler, R. T., Thauer, R. K., & Kindermann, M. (2016). Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proceedings of the National Academy of Sciences of the United States of America, 446, 6172–6177.

    Article  Google Scholar 

  • Duthie, C. A., Rooke, J. A., Hyslop, J. J., & Waterhouse, A. (2015). Methane emissions from two breeds of beef cows offered diets containing barley straw with either grass silage or brewers’ grains. Animal, 9(10), 1680–1687. https://doi.org/10.1017/S1751731115001251

    Article  CAS  PubMed  Google Scholar 

  • Duval, S., & Kindermann, M. (2012). Use of nitrooxy organic molecules in feed for reducing methane emission in ruminants, and/or to improve ruminant performance. World Intellectual Property Organization, assignee. Pat. No. WO 2012/084629 A1.

    Google Scholar 

  • Duval, B. D., Aguerre, M., Wattiaux, M., Vadas, P. A., & Powell, J. M. (2016). Potential for reducing on-farm greenhouse gas and ammonia emissions from dairy cows with prolonged dietary tannin additions. Water, Air, and Soil Pollution, 227(9), 329.

    Article  Google Scholar 

  • Elcoso, G., Zweifel, B., & Bach, A. (2019). Effects of a blend of essential oils on milk yield and feed efficiency of lactating dairy cows. Applied Animal Science, 35(3), 304–311.

    Article  Google Scholar 

  • Ellis, J. L., Dijkstra, J., Kebreab, E., Bannink, A., Odongo, N. E., McBride, B. W., & France, J. (2008). Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. The Journal of Agricultural Science, 146, 213–233. https://doi.org/10.1017/s0021859608007752

    Article  CAS  Google Scholar 

  • Feng, X. Y., Dijkstra, J., Bannink, A., van Gastelen, S., France, J., & Kebreab, E. (2020). Antimethanogenic effects of nitrate supplementation in cattle: A meta-analysis. Journal of Dairy Science, 103(12), 11375–11385. https://doi.org/10.3168/jds.2020-18541

    Article  CAS  PubMed  Google Scholar 

  • Fernández, C., Gomis-Tena, J., Hernández, A., & Saiz, J. (2019a). An open-circuit indirect calorimetry head hood system for measuring methane emission and energy metabolism in small ruminants. Animals, 9, 380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández, C., Pérez-Baena, I., Marti, J. V., Palomares, J. L., Jorro-Ripoll, J., & Segarra, J. V. (2019b). Use of orange leaves as a replacement for alfalfa in energy and nitrogen partitioning, methane emissions and milk performance of murciano-granadina goats. Animal Feed Science and Technology, 247, 103–111.

    Article  Google Scholar 

  • Gerrits, W. J. J., Labussière, E., Reynolds, C. K., Metges, C. C., Kuhla, B., Lund, P., Weisbjerg, M. R., & Dijkstra, J. (2018). Recovery test results as a prerequisite for publication of gaseous exchange measurements. Journal of Dairy Science, 101, 4703–4704. https://doi.org/10.3168/jds.2017-13705

    Article  CAS  PubMed  Google Scholar 

  • Global Research Alliance. (2018). https://globalresearchalliance.org/wp- content/uploads/2018/02/LRG-Manual-Facility-BestPract-Sept-2018.pdf

  • Goopy, J. P., Woodgate, R., Donaldson, A., Robinson, D. L., & Hegarty, R. S. (2011). Validation of a short-term methane measurement using portable static chambers to estimate daily methane production in sheep. Animal Feed Science and Technology, 166–167, 219–226.

    Article  Google Scholar 

  • Grainger, C., & Beauchemin, K. A. (2011). Can enteric methane emissions from ruminants be lowered without lowering their production? Animal Feed Science and Technology, 166, 308–320.

    Article  Google Scholar 

  • Grainger, C., Williams, R., Clarke, T., Wright, A. D., & Eckard, R. J. (2010). Supplementation with whole cottonseed causes long-term reduction of methane emissions from lactating dairy cows offered a forage and cereal grain diet. Journal of Dairy Science, 93(6), 2612–2619.

    Article  CAS  PubMed  Google Scholar 

  • Guyader, J., Eugène, M., Doreau, D. P., Gérard, C., Loncke, C., & Martin, C. (2015). Nitrate but not tea saponin feed additives decreased enteric methane emissions in nonlactating cows. Journal of Animal Science, 93, 5367–5377. https://doi.org/10.2527/jas2015-9367

    Article  CAS  PubMed  Google Scholar 

  • Guyader, J., Doreau, M., Morgavi, D. P., Gérard, C., Loncke, C., & Martin, C. (2016). Long- term effect of linseed plus nitrate fed to dairy cows on enteric methane emission and nitrate and nitrite residuals in milk. Animal, 10(7), 1173–1181.

    Article  CAS  PubMed  Google Scholar 

  • Guyader, J., Eugène, M., Doreau, M., Morgavi, D. P., Gérard, C., & Martin, C. (2017). Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. Journal of Dairy Science, 100(3), 1845–1855.

    Article  CAS  PubMed  Google Scholar 

  • Haisan, J., Sun, Y., Guan, L. L., Beauchemin, K. A., Iwaasa, A., Duval, S., Barreda, D. R., & Oba, M. (2014). The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. Journal of Dairy Science, 97, 3310–3319. https://doi.org/10.3168/jds.2013-7834

    Article  CAS  Google Scholar 

  • Hammond, K. J., Crompton, L. A., Bannink, A., Dijkstra, J., Yáñez-Ruiz, D. R., O’Kiely, P., Kebreab, E., Eugène, M. A., Yu, Z., Shingfield, K. J., Schwarm, A., Hristov, A., & Reynolds, C. K. (2016). Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Animal Feed Science and Technology, 219, 13–30. https://doi.org/10.1016/j.anifeedsci.2016.05.018

    Article  CAS  Google Scholar 

  • Hristov, A. N., Oh, J., Firkins, J. L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H. P. S., Adesogan, A. T., Yang, W., Lee, C., Gerber, P. J., Henderson, B., & Tricarico, J. M. (2013). SPECIAL TOPICS – Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Animal Science, 91(11), 5045–5069. https://doi.org/10.2527/jas.2013-6583

    Article  CAS  PubMed  Google Scholar 

  • Hristov, A. N., Oh, J., Giallongo, F., Frederick, T. W., Harper, M. T., Weeks, H. L., Branco, A. F., Moate, P. J., Deighton, M. H., Williams, S. R. O., Kindermann, M., & Duval, S. (2015). An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10663–10668. https://doi.org/10.1073/pnas.1504124112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hristov, A. N., Kebreab, E., Niu, M., Oh, J., Bannink, A., Bayat, A. R., Boland, T. B., Brito, A. F., Casper, D. P., Crompton, L. A., Dijkstra, J., Eugene, M., Garnsworthy, P. C., Haque, N., Hellwing, A. L. F., Huhtanen, P., Kreuzer, M., Kuhla, B., Lund, P., Madsen, J., Martin, C., Moate, P. J., Muetzel, S., Munoz, C., Peiren, N., Powell, J. M., Reynolds, C. K., Schwarm, A., Shingfield, K. J., Storlien, T. M., Weisbjerg, M. R., Yáñez-Ruiz, D. R., & Yu, Z. (2018). Uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of Dairy Science, 101, 6655–6674. https://doi.org/10.3168/jds.2017-13536

    Article  CAS  PubMed  Google Scholar 

  • Huhtanen, P., Cabezas-Garcia, E. H., Utsumi, S., & Zimmerman, S. (2015). Comparison of methods to determine methane emissions from dairy cows in farm conditions. Journal of Dairy Science, 98, 3394–3409. https://doi.org/10.3168/jds.2014-9118

    Article  CAS  PubMed  Google Scholar 

  • Jayanegara, A., Leiber, F., & Kreuzer, M. (2012). Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal of Animal Physiology and Animal Nutrition, 96(3), 365–375. https://doi.org/10.1111/j.1439-0396.2011.01172.x

  • Jayanegara, A., Sarwono, K. A., Kondo, M., Matsui, H., Ridla, M., Laconi, E. B., & Nahrowi. (2018). Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: A meta-analysis. Italian Journal of Animal Science, 17(3), 650–656. https://doi.org/10.1080/1828051X.2017.1404945

    Article  CAS  Google Scholar 

  • Jeyanathan, J., Martin, C., & Morgavi, D. P. (2014). The use of direct-fed microbials for mitigation of ruminant methane emissions: A review. Animal, 8(2), 250–261. https://doi.org/10.1017/S1751731113002085

    Article  CAS  PubMed  Google Scholar 

  • Jeyanathan, J., Martin, C., Eugène, M., Ferley, A., Popova, M., & Morgavi, D. P. (2019). Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. Journal of Animal Science and Biotechnology, 10, 41. https://doi.org/10.1186/s40104-019-0342-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Joch, M., Kudrna, V., Hakl, J., Božik, M., Homolka, P., Illek, J., Tyrolová, Y., & Výborná, A. (2019). In vitro and in vivo potential of a blend of essential oil compounds to improve rumen fermentation and performance of dairy cows. Animal Feed Science and Technology, 251, 176–186.

    Article  CAS  Google Scholar 

  • Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 738, 2483–2492. https://doi.org/10.2527/1995.7382483x

    Article  Google Scholar 

  • Jonker, A., Hickey, S., McEwan, J. C., & Waghorn, G. C. (2020a). Portable accumulation chambers for enteric methane determination in sheep. In A. Jonker & G. C. Waghorn (Eds.), Guidelines for estimating methane emissions from individual ruminants using: GreenFeed, ‘sniffers, hand-held laser detector and portable accumulation chambers (MPI Technical paper No 2020/05) (pp. 49–56). Ministry for Primary Industries. https://www.researchgate.net/publication/348976896_Chapter_6_Portable_accumulation_chambers_for_enteric_methane_determination_in_sheep

    Google Scholar 

  • Jonker, A., Difford, G. F., Garnsworthy, P. C., Negussie, E., Pszczola, M., Roman-Ponce, S. I., & Waghorn, G. C. (2020b). ‘Sniffer’ methane measurement systems to determine methane concentrations in air emitted by cows. In A. Jonker & G. C. Waghorn (Eds.), Guidelines for estimating methane emissions from individual ruminants using: GreenFeed, ‘sniffers, hand-held laser detector and portable accumulation chambers (MPI Technical paper No 2020/05) (pp. 27–39). Ministry for Primary Industries. https://www.researchgate.net/publication/348976896_Chapter_6_Portable_accumulation_chambers_for_enteric_methane_determination_in_sheep

    Google Scholar 

  • Kiani, A., Wolf, C., Giller, K., Eggerschwiler, L., Kreuzer, M., & Schwarm, A. (2020). In vitro ruminal fermentation and methane inhibitory effect of three species of microalgae. Canadian Journal of Animal Science, 100, 485–493. https://doi.org/10.1139/cjas-2019-0187

    Article  CAS  Google Scholar 

  • Kinley, R. D., Martinez-Fernandez, G., Matthews, M. J., de Nys, R., Magnusson, M., & Tomkins, N. W. (2020). Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. Journal of Cleaner Production, 259, 120836. https://doi.org/10.1016/j.jclepro.2020.120836

    Article  Google Scholar 

  • Kliem, K. E., Humphries, D. J., Kirton, P., Givens, D. I., & Reynolds, C. K. (2019). Differential effects of oilseed supplements on methane production and milk fatty acid concentrations in dairy cows. Animal, 13(2), 309–317. https://doi.org/10.1017/S1751731118001398

    Article  CAS  PubMed  Google Scholar 

  • Klop, G., Dijkstra, J., Dieho, K., Hendriks, W. H., & Bannink, A. (2017). Enteric methane production in lactating dairy cows with continuous feeding of essential oils or rotational feeding of essential oils and lauric acid. Journal of Dairy Science, 100(5), 3563–3575.

    Article  CAS  PubMed  Google Scholar 

  • Latham, E. A., Anderson, R. C., Pinchak, W. E., & Nisbet, D. J. (2016). Insights on alterations to the rumen ecosystem by nitrate and nitrocompounds. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00228

  • Lee, C., & Beauchemin, K. A. (2014). A review of feeding supplementary nitrate to ruminant animals: Nitrate toxicity, methane emissions, and production performance. Canadian Journal of Animal Science, 94(4), 557–570.

    Article  CAS  Google Scholar 

  • Lee, M. A., Davis, A. P., Chagunda, M. G. G., & Manning, P. (2017). Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences, 14, 1403–1417. https://doi.org/10.5194/bg-14-1403-2017

    Article  CAS  Google Scholar 

  • Leng, R. A., Preston, T. R., & Inthapanya, S. (2012). Biochar reduces enteric methane and improves growth and feed conversion in local “Yellow” cattle fed cassava root chips and fresh cassava foliage. Livestock Research for Rural Development, 24. http://www.lrrd.org/lrrd24/11/leng24199.htm

  • Li, X., Norman, H. C., Kinley, R. D., Laurence, M., Wilmot, M., Bender, H., de Nys, R., & Tomkins, N. (2018). Asparagopsis taxiformis decreases enteric methane production from sheep. Animal Production Science, 58, 681–688. https://doi.org/10.1071/AN15883

    Article  CAS  Google Scholar 

  • Lind, V., Weisbjerg, M. R., Jørgensen, G. M., Fernandez-Yepes, J. E., Arbesú, L., & Molina- Alcaide, E. (2020). Ruminal fermentation, growth rate and methane production in sheep fed diets including white clover, soybean meal or Porphyra sp. Animals, 10, 79. https://doi.org/10.3390/ani10010079

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes, J. C., de Matos, L. F., Harper, M. T., Giallongo, F., Oh, J., Gruen, D., Ono, S., Kindermann, M., Duval, S., & Hristov, A. N. (2016). Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows. Journal of Dairy Science, 99, 5335–5344.

    Article  CAS  PubMed  Google Scholar 

  • Lv, X., Mao, S., & Zhu, W. (2016). A 22:6 n-3 rich supplement affects the ruminal microbial community and fermentation and alters plasma metabolites. Annals of Animal Science, 16, 533–550. https://doi.org/10.1515/aoas-2015-0100

    Article  CAS  Google Scholar 

  • Machado, L., Magnusson, M., Paul, N. A., Kinley, R., de Nys, R., & Tomkins, N. (2016). Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. Journal of Applied Phycology, 28, 3117–3126. https://doi.org/10.1007/s10811-016-0830-7

    Article  CAS  Google Scholar 

  • Makkar, H. P. S., Tran, G., Heuze, V., Giger-Reverdin, S., Lessire, M., Lebas, F., & Ankers, P. (2016). Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212, 1–17. https://doi.org/10.1016/j.anifeedsci.2015.09.018

    Article  CAS  Google Scholar 

  • Malik, P. K., Kolte, A. P., Baruah, L., Saravanan, M., Bakshi, B., & Bhatta, R. (2017). Enteric methane mitigation in sheep through leaves of selected tanniniferous tropical tree species. Livestock Science, 200, 29–34.

    Article  Google Scholar 

  • Martin, C., Ferlay, A., Mosoni, P., Rochette, Y., Chilliard, Y., & Doreau, M. (2016). Increasing linseed supply in dairy cow diets based on hay or corn silage: Effect on enteric methane emission, rumen microbial fermentation, and digestion. Journal of Dairy Science, 99(5), 3445–3456. https://doi.org/10.3168/jds.2015-10110

    Article  CAS  PubMed  Google Scholar 

  • McAllister, T. A., Okine, E. K., Mathison, G. W., & Cheng, K.-J. (1996). Dietary, environmental and microbiological aspects of methane production in ruminants. Canadian Journal of Animal Science, 76, 231–243.

    Article  CAS  Google Scholar 

  • McCauley, J. I., Labeeuw, L., Jaramillo-Madrid, A. C., Nguyen, L. N., Nghiem, L. D., Chaves, A. V., & Ralph, P. J. (2020). Management of enteric methanogenesis in ruminants by Algal-derived feed additives. Current Pollution Reports, 6, 188–205. https://doi.org/10.1007/s40726-020-00151-7

    Article  CAS  Google Scholar 

  • Melgar, A., Harper, M. T., Oh, J., Giallongo, F., Young, M. E., Ott, T. L., Duval, S., & Hristov, A. N. (2019). Effects of 3-nitrooxypropanol on rumen fermentation, lactational performance and resumption of ovarian cyclicity in dairy cows. Journal of Dairy Science, 103, 410–432. https://doi.org/10.3168/jds.2019-17085

    Article  CAS  PubMed  Google Scholar 

  • Meller, R. A., Wenner, B. A., Ashworth, J., Gehman, A. M., Lakritz, J., & Firkins, J. L. (2019). Potential roles of nitrate and live yeast culture in suppressing methane emission and influencing ruminal fermentation, digestibility, and milk production in lactating Jersey cows. Journal of Dairy Science, 102, 6144–6156.

    Article  CAS  PubMed  Google Scholar 

  • Mirheidari, A., Torbatinejad, N. M., Shakeri, P., & Mokhtarpour, A. (2020). Effects of biochar produced from different biomass sources on digestibility, ruminal fermentation, microbial protein synthesis and growth performance of male lambs. Small Ruminant Research, 183, 106042. https://doi.org/10.1016/j.smallrumres.2019.106042

    Article  Google Scholar 

  • Mizeck, G., Chagunda, G., Flockhart, J. F., & Roberts, D. J. (2010). The effect of forage quality on predicted enteric methane production from dairy cows. International Journal of Agricultural Sustainability, 8(4), 250–256.

    Article  Google Scholar 

  • Moate, P. J., Jacobs, J. L., Hannah, M. C., Morris, G. L., Beauchemin, K. A., Alvarez Hess, P. S., Eckard, R. J., Liu, Z., Rochfort, S., Wales, W. J., & Williams, S. R. O. (2018). Adaptation responses in milk at yield and methane emissions of dairy cows when what was included in their diet for 16 weeks. Journal of Dairy Science, 101, 7117–7132. https://doi.org/10.3168/jds.2017-14334

    Article  CAS  PubMed  Google Scholar 

  • Mueller-Harvey, I., Bee, G., Dohme-Meier, F., Hoste, H., Karonen, M., Kölliker, R., Lüscher, A., Niderkorn, V., Pellikaan, W. F., Salminen, J., Skøt, L., Smith, L. M., Thamsborg, S. M., Totterdell, P., Wilkinson, I., Williams, A. R., Azuhnwi, B. N., Baert, N., Brinkhaus, A. G., Copani, G., Desrues, O., Drake, C., Engström, M., Fryganas, C., Girard, M., Huyen, N. T., Kempf, K., Malisch, C., Mora-Ortiz, M., Quijada, J., Ramsay, A., Ropiak, H. M., & Waghorn, G. C. (2019). Benefits of condensed tannins in forage legumes fed to ruminants: Importance of structure, concentration, and diet composition. Crop Science, 59, 861–885.

    Article  CAS  Google Scholar 

  • Muizelaar, W., Groot, M., van Duinkerken, G., Peters, R., & Dijkstra, J. (2021). Safety and transfer study: Transfer of bromoform present in Asparagopsis taxiformis to milk and urine of lactating dairy cows. Food, 10, 584. https://doi.org/10.3390/foods10030584

    Article  CAS  Google Scholar 

  • Muñoz, C., Sánchez, R., Peralta, A. M. T., Espíndola, S., Yan, T., Morales, R., & Ungerfeld, E. M. (2019). Effects of feeding unprocessed oilseeds on methane emission, nitrogen utilization efficiency and milk fatty acid profile of lactating dairy cows. Animal Feed Science and Technology, 249, 18–30.

    Article  Google Scholar 

  • Newbold, J. R., Van Zijderveld, S. M., Hulshof, R. B. A., Fokkink, W. B., Leng, R. A., Terencio, P., Powers, W. J., can Adrichem, P. S. J., Paton, N. D., & Perdok, H. B. (2014). The effect of incremental levels of dietary nitrate on methane emissions in Holstein steers and performance in Nelore bulls. Journal of Animal Science, 92(11), 5032–5040.

    Article  CAS  PubMed  Google Scholar 

  • O’Neill, B. F., Deighton, M. H., O’Loughlin, B. M., Galvin, N., O’Donovan, M., & Lewis, E. (2012). The effects of supplementing grazing dairy cows with partial mixed ration on enteric methane emissions and milk production during mid to late lactation. Journal of Dairy Science, 95(11), 6582–6590. https://doi.org/10.3168/jds.2011-5257

    Article  CAS  PubMed  Google Scholar 

  • O’Toole, A., Andersson, D., Gerlach, A., Glaser, B., Kammann, C., Kern, J., Kuoppamäki, K., Mumme, J., Schmidt, H. P., Schulze, M., Srocke, F., Stenrød, M., & Stenström, J. (2016). Current and future applications for biochar. In S. Shackley, G. Ruysschaert, K. Zwart, & B. Glaser (Eds.), Biochar in European soils and agriculture: Science and practice. Routledge.

    Google Scholar 

  • Olijhoek, D. W., Løvendahl, P., Lassen, J., Hellwing, A. L. F., Höglund, J. K., Weisbjerg, M. R., Noel, S. J., McLean, F., Højbjerg, O., & Lund, P. (2018). Methane production, rumen fermentation, and diet digestibility of Holstein and Jersey dairy cows being divergent in residual feed intake and fed at 2 forage-to-concentrate ratios. Journal of Dairy Science, 101(11), 9926–9940. https://doi.org/10.3168/jds.2017-14278

    Article  CAS  PubMed  Google Scholar 

  • Ortega, O. A. C., Beltran, P. E. P., Pineda, G. S. H., Benaouda, M., Ronquillo, M. G., Molina, L. T., Vera, J. C. K., Perez, H. D. M., & Carrillo, M. F. V. (2020). Construction and operation of a respiration chamber of the head-box type for methane measurement from cattle. Animals, 10, 227. https://doi.org/10.3390/ani10020227

    Article  Google Scholar 

  • Patra, A. K. (2010). Meta-analyses of effects of phytochemicals on rumen fermentation characteristics and digestibility associated with methanogenesis. Journal of the Science of Food and Agriculture, 90, 2700–2708.

    Article  CAS  PubMed  Google Scholar 

  • Patra, A. K. (2013). The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livestock Science, 155(2–3), 244–254. https://doi.org/10.1016/j.livsci.2013.05.023

    Article  Google Scholar 

  • Petersen, S. O., Hellwig, A. L. F., Brask, M., Højbjerg, O., Poulsen, M., Zhu, Z., Baral, K. R., & Lund, P. (2015). Dietary nitrate for methane mitigation leads to nitrous oxide emissions from dairy cows. Journal of Environmental Quality, 44, 1063–1070. https://doi.org/10.2134/jeq2015.02.0107

    Article  CAS  PubMed  Google Scholar 

  • Pinares-Patiño, C. S., D’Hour, P., Jouany, J.-P., & Martin, C. (2007). Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle. Agriculture, Ecosystems and Environment, 121, 30–46. https://doi.org/10.1016/j.agee.2006.03.024

    Article  CAS  Google Scholar 

  • Pinares-Patiño, C. S., Lassey, K. R., Martin, R. J., Molano, G., Fernandez, M., MacLean, S., Sandoval, E., Luo, D., & Clark, H. (2011). Assessment of the sulphur hexafluoride (SF6) tracer technique using respiration chambers for estimation of methane emissions from sheep. Animal Feed Science and Technology, 166-167, 201–209. https://doi.org/10.1016/j.anifeedsci.2011.04.067

    Article  CAS  Google Scholar 

  • Pirondini, M., Colombini, S., Mele, M., Malagutti, L., Rapetti, L., Galassi, G., & Crovetto, G. M. (2015). Effect of dietary starch concentration and fish oil supplementation on milk yield and composition, diet digestibility, and methane emissions in lactating dairy cows. Journal of Dairy Science, 98(1), 357–372. https://doi.org/10.3168/jds.2014-8092

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Morales, E., Rossi, G., Cattin, M., Jones, E., Braganca, R., & Newbold, C. J. (2018). The effect of an isoflavonid-rich liquorice extract on fermentation, methanogenesis and the microbiome in the rumen simulation technique. FEMS Microbiology Ecology, 94(3), fiy009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richie, H., & Roser, M. (2020). Emissions by sector. https://ourworldindata.org/emissions-by-sector (downloaded November 9 2020).

  • Richmond, A. S., Wylie, A. R. G., Laidlaw, A. S., & Lively, F. O. (2015). Methane emissions from beef cattle grazing on semi-natural upland and improved lowland grasslands. Animal, 9(1), 130–137. https://doi.org/10.1017/S1751731114002067

    Article  CAS  PubMed  Google Scholar 

  • Rira, M., Morgavi, D. P., Popova, M., Marie-Magdeleine, C., Silou-Etienne, T., Archimède, H., & Doreau, M. (2016). Ruminal methanogens and bacteria populations in sheep are modified by a tropical environment. Animal Feed Science and Technology, 220, 226–236.

    Article  CAS  Google Scholar 

  • Robinson, D. L., Goopy, J. P., Hegarty, R. S., & Oddy, V. H. (2015). Comparison of repeated measurements of methane production in sheep over 5 years and a range of measurement protocols. Journal of Animal Science, 93, 4637–4650.

    Article  CAS  PubMed  Google Scholar 

  • Roque, B. M., Salwan, J. K., Kinley, R., & Kebreab, E. (2019). Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. Journal of Cleaner Production, 234, 132–138. https://doi.org/10.1016/j.jclepro.2019.06.193

    Article  CAS  Google Scholar 

  • Russell, J. B. (1998). The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. Journal of Dairy Science, 81, 3222–3230.

    Article  CAS  PubMed  Google Scholar 

  • Sauvant, D., & Giger-Reverdin, S. (2007). Emperical modelling by meta-analysis of digestive interactions and CH4 production in ruminants. In I. Ortigues-Marty, N. Miraux, & W. Brand Williams (Eds.), Energy and protein metabolism and nutrition (EAAP publication no. 124) (pp. 561–562). Wageningen Academic Publishers.

    Google Scholar 

  • Savian, J. V., Schons, R. M. T., de Souza Filho, W., Zunieta, A. S., Kindlein, L., Bindelle, J., Bayer, C., Bremm, C., & de Faccio Carvalho, P. C. (2021). “Rotatonuous” stocking as a climate-smart grazing management strategy for sheep production. Science of the Total Environment, 753, 141790. https://doi.org/10.1016/j.scitotenv.2020.141790

    Article  CAS  PubMed  Google Scholar 

  • Silveira, S. R., Terry, S. A., Biffin, T. E., Mauricio, R. M., Pereira, L. G. R., Ferreira, A. L., Ribeiro, R. S., Sacramento, J. P., Romich, T. R., Machado, F. S., Campos, M. M., Gama, M. A. S., & Chaves, A. V. (2019). Replacement of soybean meal with soybean cake reduces methane emissions in dairy cows and an assessment of a face-mask technique for methane measurement. Frontiers in Veterinary Science, 6, 295. https://doi.org/10.3389/fvets.2019.00295

    Article  PubMed  PubMed Central  Google Scholar 

  • Soussana, J. F., Rallec, T., & Blanfort, V. (2010). Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal, 4, 334–350. https://doi.org/10.1017/S1751731109990784

    Article  CAS  PubMed  Google Scholar 

  • Stefenoni, H. A., Räisänen, S. E., Cueva, S. F., Wasson, D. E., Lage, C. F. A., Melgar, A., Fetter, M. E., Smith, P., Hennessy, M., Vecchiarelli, B., Bender, J., Pitta, D., Cantrell, C. L., Yarish, C., & Hristov, A. N. (2021). Effects of the macroalgae Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. Journal of Dairy Science, 104(4), 4157–4173. https://doi.org/10.3168/jds.2020-19686

    Article  CAS  PubMed  Google Scholar 

  • Suybeng, B., Charmley, E., Gardiner, C. P., Malau-Aduli, B. S., & Malau-Aduli, A. E. (2020). Supplementing Northern Australian beef cattle with Desmanthus tropical legume reduces in- vivo methane emissions. Animals, 10(11), 2097.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamminga, S., Bannink, A., Dijkstra, J., & Zom, R. (2007). Feeding strategies to reduce methane loss in cattle (Report 34). Animal Science Group. 46 pp. ISSN 1570-8610.

    Google Scholar 

  • Terranova, M., Eggerschwiler, L., Ortmann, S., Clauss, M., Kreuzer, M., & Schwarm, A. (2021). Increasing the proportion of hazel leaves in the diet of dairy cows reduced methane yield and excretion of nitrogen in volatile form, but not milk yield. Animal Feed Science and Technology, 276, 114790. https://doi.org/10.1016/j.anifeedsci.2020.114790

    Article  CAS  Google Scholar 

  • Terry, S. A., Ribeiro, G. O., Gruninger, R. J., Chaves, A. V., Beauchemin, K. A., Okine, E., & McAllister, T. A. (2019). A pine enhanced biochar does not decrease enteric CH4 emissions but alters the rumen microbiota. Frontiers in Veterinary Science, 6, 308. https://doi.org/10.3389/fvets.2019.00308

    Article  PubMed  PubMed Central  Google Scholar 

  • Terry, S. A., Redman, A.-A. P., Ribeiro, G. O., Chaves, A. V., Beauchemin, K. A., Okine, E., & McAllister, T. A. (2020). Effect of a pine enhanced biochar on growth performance, carcass quality and feeding behaviour of feedlot steers. Translational Animal Science, 4(2), 831–838. https://doi.org/10.1093/tas/txaa011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tibbetts, S. M., MacPherson, T., McGinn, P. J., & Fredeen, A. H. (2016). In vitro digestion of microalgal biomass from freshwater species isolated in Alberta, Canada for monogastric and ruminant animal feed applications. Algal Research, 19, 324–332. https://doi.org/10.1016/j.algal.2016.01.016

    Article  Google Scholar 

  • Tomkins, N. W., Colegate, S. M., & Hunter, R. A. (2009). A bromochloromethane formulation reduces enteric methanogenesis in cattle fed grain-based diets. Animal Production Science, 49, 1053–1058.

    Article  CAS  Google Scholar 

  • Ulyatt, M. J., Lassey, K. R., Shelton, I. D., & Walker, C. F. (2005). Methane emission from sheep grazing four pastures in late summer in New Zealand. New Zealand Journal of Agricultural Research, 48, 385–390.

    Article  CAS  Google Scholar 

  • Ungerfeld, E. M. (2018). Inhibition of rumen methanogenesis and ruminant productivity: A meta-analysis. Frontiers in Veterinary Science, 5(113). https://doi.org/10.3389/fvets.2018.00113

  • Van Engelen, S., Bovenhuis, H., van der Tol, P. P. J., & Visker, M. H. (2018). Genetic background of methane emission by Dutch Holstein Friesian cows measured with infrared sensors in automatic milking systems. Journal of Dairy Science, 101, 2226–2234.

    Article  PubMed  Google Scholar 

  • van Gastelen, S., Visker, M., Edwards, J. E., Antunes-Fernandes, E. C., Hettinga, K. A., Alferink, S. J. J., Hendriks, W. H., Bovenhuis, H., Smidt, H., & Dijkstra, J. (2017). Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows. Journal of Dairy Science, 100(11), 8939–8957. https://doi.org/10.3168/jds.2016-12367

    Article  CAS  PubMed  Google Scholar 

  • Van Wesemael, D., Vandaele, L., Ampe, B., Cattrysse, H., Duval, S., Kindermann, M., Fievez, V., De Campeneere, S., & Peiren, N. (2019). Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol. Journal of Dairy Science, 102(2), 1780–1787. https://doi.org/10.3168/jds.2018-14534

    Article  CAS  PubMed  Google Scholar 

  • Vargas, J. E., Andrés, S., López-Ferreras, L., Snelling, T. J., Yáñez-Ruíz, D. R., García- Estrada, C., & López, S. (2020). Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Scientific Reports, 10(1), 1–9.

    Article  Google Scholar 

  • Vasta, V., Daghio, M., Cappucci, A., Buccioni, A., Serra, A., Viti, C., & Mele, M. (2019). Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. Journal of Dairy Science, 102(5), 3781–3804. https://doi.org/10.3168/jds.2018-14985

    Article  CAS  PubMed  Google Scholar 

  • Vyas, D., Alemu, A. W., McGinn, S. K., Dival, S. K., Kindermann, M., & Beauchemin, K. A. (2018). The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high-forage and high-grain diets. Journal of Animal Science, 96(7), 2923–2938. https://doi.org/10.1093/jas/sky174

    Article  PubMed  PubMed Central  Google Scholar 

  • Warner, D., Hatew, B., Podesta, S. C., Klop, G., van Gastelen, S., van Laar, H., Dijkstra, J., & Bannink, A. (2016). Effects of nitrogen fertilization rate and maturity of grass silage on methane emission by lactating dairy cows. Animal, 10, 34–43.

    Article  CAS  PubMed  Google Scholar 

  • Warner, D., Bannink, A., Hatew, B., van Laar, H., & Dijkstra, J. (2017). Effects of grass silage quality and level of feed intake on enteric methane production in lactating dairy cows. Journal of Animal Science, 95, 3687–3700.

    CAS  PubMed  Google Scholar 

  • Washburn, L. E., & Brody, S. (1937). Growth and development XLII. Methane, hydrogen, and carbon dioxide production in the digestive tract of ruminants in relation to the respiratory exchange. In F. B. Mumford (Ed.), Growth and development. University of Missouri.

    Google Scholar 

  • Wilkinson, J. M., & Lee, M. R. F. (2018). Review: Use of human-edible animal feeds by ruminant livestock. Animal, 12(8), 1735–1743. https://doi.org/10.1017/S175173111700218X

    Article  CAS  PubMed  Google Scholar 

  • Williams, S. R. O., Hannah, M. C., Eckard, R. J., Wales, W. J., & Moate, P. J. (2020). Supplementing the diet of dairy cows with fat or tannin reduces methane yield, and additively when fed in combination. Animal, 14(3), 464–472.

    Article  Google Scholar 

  • Zimmerman, P. R. (1993). System for measuring metabolic gas emissions from animals. United States Patent number US005265618A.

    Google Scholar 

  • Zimmerman, P. R., & Zimmerman, R. S. (2012). Methods and system for monitoring and reducing ruminant methane production. United States patent number 2011/0192213.

    Google Scholar 

  • Zubieta, Á. S., Savian, J. V., Souza Filho, W. de, Wallau, M. O., Gómez, A. M., Bindelle, J., Bonnet, O. J. F., & Calvalho, P. C. F. (2021). Review: Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems? Science of the Total Environment, 754, 142029. https://doi.org/10.1016/j.scitotenv.2020.142029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alex Chaves and Diego Morgavi for the very helpful, constructive reviewer comments on the original draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibeke Lind .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lind, V. et al. (2023). Nutritional Approaches to Reduce Enteric Methane Emission from Ruminants. In: Bartzanas, T. (eds) Technology for Environmentally Friendly Livestock Production. Smart Animal Production. Springer, Cham. https://doi.org/10.1007/978-3-031-19730-7_4

Download citation

Publish with us

Policies and ethics