Skip to main content

Most Common Oral Health Conditions

  • Chapter
  • First Online:
Artificial Intelligence in Dentistry

Abstact

This chapter explores in detail the most common Oral Health conditions and outlines the implementation of AI in detection and diagnosis parallely. After providing a clear insight on the prevalence of oral diseases, this chapter elaborates on the aetiology, classification, diagnosis and treatment aspects of conditions like dental caries, periodontal diseases, oral cancer, oral manifestation HIV infection, oro-dental trauma, NOMA, cleft lip & palate and oral manifestation of systemic diseases. This chapter concludes by laying out the global epidemiological overview of oral disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nayyar N, Ojcius DM, Dugoni AA (2020) The role of medicine and technology in shaping the future of oral health. J Calif Dent Assoc 48(3):127–130

    Google Scholar 

  2. Ahmed N, Abbasi MS, Zuberi F, Qamar W, Halim MSB, Maqsood A, Alam MK (2021) Artificial intelligence techniques: analysis, application, and outcome in dentistry – a systematic review. Biomed Res Int 2021:9751564. https://doi.org/10.1155/2021/9751564

    Article  Google Scholar 

  3. Hung M, Park J, Hon ES, Bounsanga J, Moazzami S, Ruiz-Negron B, Wang D (2020) Artificial intelligence in dentistry: harnessing big data to predict oral cancer survival. World J Clin Oncol 11(11):918–934. https://doi.org/10.5306/wjco.v11.i11.918

    Article  Google Scholar 

  4. World Health Organisation (2022 Mar 15) Oral health. https://www.who.int/news-room/fact-sheets/detail/oral-health

  5. Marcenes W, Kassebaum NJ, Bernabé E, Flaxman A, Naghavi M, Lopez A, Murray CJL (2013) Global burden of oral conditions in 1990–2010: a systematic analysis. J Dent Res 92(7):592–597. https://doi.org/10.1177/0022034513490168

    Article  Google Scholar 

  6. Abid A, Maatouk F, Berrezouga L, Azodo C, Uti O, El-Shamy H, Oginni A (2015) Prevalence and severity of oral diseases in the Africa and Middle East region. Adv Dent Res 27(1):10–17. https://doi.org/10.1177/0022034515582062

    Article  Google Scholar 

  7. Yap AU (2017) Oral health equals total health: a brief review. Literature review. J Dent Indones 24(2):59–62. https://doi.org/10.14693/jdi.v24i2.1122. https://www.researchgate.net/publication/319919543_Oral_Health_Equals_Total_Health_A_Brief_Review/fulltext/59c1d4c2a6fdcc69b92bcdd0/Oral-Health-Equals-Total-Health-A-Brief-Review.pdf

    Article  MathSciNet  Google Scholar 

  8. Merrill RL (2012 Apr) Temporomandibular disorder pain and dental treatment of obstructive sleep apnea. Dent Clin N Am 56(2):415–431. https://doi.org/10.1016/j.cden.2012.01.004. PMID: 22480811. https://pubmed.ncbi.nlm.nih.gov/22480811

  9. Rajendran R, Sivapathasundharam B, Shafer WG (2009) Shafer’s textbook of oral pathology. Elsevier/Reed Elsevier, New Delhi

    Google Scholar 

  10. Marklein KE, Torres-Rouff C, King LM, Hubbe M. The precarious state of subsistence: reevaluating dental pathological lesions associated with agricultural and hunter-gatherer lifeways. 60(3) https://www.journals.uchicago.edu/doi/10.1086/703376

  11. Mayo Clinic. Patient care & health information, cavities/tooth decay. https://www.mayoclinic.org/diseasesconditions/cavities/symptoms-causes/syc-20352892

  12. Tahir L, Nazir R. Dental caries, etiology, and remedy through natural resources. https://doi.org/10.5772/intechopen.75937. https://www.intechopen.com/chapters/60503

  13. Rathee M, Sapra A (2021) Dental caries. [Updated 2021 Oct 6]. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island. 2022 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551699/

  14. Young DA, Nový BB, Zeller GG, Hale R, Hart TC, Truelove EL, American Dental Association Council on Scientific Affairs. The American Dental Association caries classification system for clinical practice. A report of the American Dental Association Council on Scientific Affairs. https://jada.ada.org/action/showPdf?pii=S0002-8177%2814%2900029-4

  15. Macri DV, Chitlal A. City University of New York (CUNY). CUNY academic works. https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=1060&context=ho_pubs

  16. Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet 369(9555):51–59. https://doi.org/10.1016/s0140-6736(07)60031-2

    Article  Google Scholar 

  17. Schwendicke F, Splieth C, Breschi L, Banerjee A, Fontana M, Paris S et al (2019) When to intervene in the caries process? An expert Delphi consensus statement. Clin Oral Investig 23(10):3691–3703. https://doi.org/10.1007/s00784-019-03058-w

    Article  Google Scholar 

  18. Gimenez T, Piovesan C, Braga MM, Raggio DP, Deery C, Ricketts DN et al (2015) Visual inspection for caries detection: a systematic review and meta-analysis. J Dent Res 94(7):895–904. https://doi.org/10.1177/0022034515586763

    Article  Google Scholar 

  19. Ismail AI (2004) Visual and visuo-tactile detection of dental caries. J Dent Res 83(Spec No. C):C56–C66. https://doi.org/10.1177/154405910408301s12

  20. Litzenburger F, Heck K, Pitchika V, Neuhaus KW, Jost FN, Hickel R et al (2018) Inter- and intraexaminer reliability of bitewing radiography and near-infrared light transillumination for proximal caries detection and assessment. Dentomaxillofac Radiol 47(3):20170292. https://doi.org/10.1259/dmfr.20170292

    Article  Google Scholar 

  21. Schwendicke F, Golla T, Dreher M, Krois J (2019) Convolutional neural networks for dental image diagnostics: a scoping review. J Dent 91:103226. https://doi.org/10.1016/j.jdent.2019.103226

    Article  Google Scholar 

  22. Bejnordi BE, Litjens G, van der Laak JA (2018) Machine learning compared with pathologist assessment-reply. JAMA 319(16):1726. https://doi.org/10.1001/jama.2018.1478

    Article  Google Scholar 

  23. Premkumar J, Janney BJ, Nanda A, Divakaran S, Lavanya P (2019) Detection of caries in dental X ray images using multiclass SVM. J Pharm Sci Res 11(9):3264–3268

    Google Scholar 

  24. Casalegno F, Newton T, Daher R, Abdelaziz M, Lodi-Rizzini A, Schurmann F et al (2019) Caries detection with near-infrared transillumination using deep learning. J Dent Res 98(11):1227–1233. https://doi.org/10.1177/0022034519871884

    Article  Google Scholar 

  25. Askar H, Krois J, Rohrer C, Mertens S, Elhennawy K, Ottolenghi L et al (2021) Detecting white spot lesions on dental photography using deep learning: a pilot study. J Dent 107:103615. https://doi.org/10.1016/j.jdent.2021.103615

    Article  Google Scholar 

  26. Devito KL, de Souza Barbosa F, Felippe Filho WN (2008) An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(6):879–884. https://doi.org/10.1016/j.tripleo.2008.03.002

    Article  Google Scholar 

  27. Devlin H, Williams T, Graham J, Ashley M (2021) The ADEPT study: a comparative study of dentists' ability to detect enamel-only proximal caries in bitewing radiographs with and without the use of AssistDent artificial intelligence software. Br Dent J 231(8):481–485. https://doi.org/10.1038/s41415-021-3526-6

    Article  Google Scholar 

  28. Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R et al (2020) Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent 100:103425. https://doi.org/10.1016/j.jdent.2020.103425

    Article  Google Scholar 

  29. Lee JH, Kim DH, Jeong SN, Choi SH (2018) Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 77:106–111. https://doi.org/10.1016/j.jdent.2018.07.015

    Article  Google Scholar 

  30. Sonavane A, Yadav R, Khamparia A (2021) Dental cavity classification of using convolutional neural network. Paper presented at the IOP conference series: materials science and engineering

    Google Scholar 

  31. Kuhnisch J, Meyer O, Hesenius M, Hickel R, Gruhn V (2022) Caries detection on intraoral images using artificial intelligence. J Dent Res 101(2):158–165. https://doi.org/10.1177/00220345211032524

    Article  Google Scholar 

  32. Zheng L, Wang H, Mei L, Chen Q, Zhang Y, Zhang H (2021) Artificial intelligence in digital cariology: a new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks. Ann Transl Med 9(9):763. https://doi.org/10.21037/atm-21-119

    Article  Google Scholar 

  33. Javed S, Zakirulla M, Baig RU, Asif SM, Meer AB (2020) Development of artificial neural network model for prediction of post-streptococcus mutans in dental caries. Comput Methods Prog Biomed 186:105198. https://doi.org/10.1016/j.cmpb.2019.105198

    Article  Google Scholar 

  34. Schwendicke F, Rossi JG, Gostemeyer G, Elhennawy K, Cantu AG, Gaudin R et al (2021) Cost-effectiveness of artificial intelligence for proximal caries detection. J Dent Res 100(4):369–376. https://doi.org/10.1177/0022034520972335

    Article  Google Scholar 

  35. Foros P, Oikonomou E, Koletsi D, Rahiotis C (2021) Detection methods for early caries diagnosis: a systematic review and meta-analysis. Caries Res 55:247–259. https://doi.org/10.1159/000516084

    Article  Google Scholar 

  36. Mital P, Mehta N, Saini A, Raisingani D, Sharma M (2014 Jan 6) Recent advances in detection and diagnosis of dental caries. Journal of Evolution of Medical and Dental Sciences 3(1):177–191

    Article  Google Scholar 

  37. Lee Y (2013 Sept) Diagnosis and prevention strategies for dental caries. J Lifestyle Med 3(2):107–109. Epub 2013 Sept 30. PMID: 26064846; PMCID: PMC4390741

    Google Scholar 

  38. Newman MG, Carranza FA (2015) Carranza’s clinical periodontology. Elsevier/Saunders, St. Louis

    Google Scholar 

  39. Tonetti MS, Jepsen S, Jin L, Otomo-Corgel J (2017) Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J Clin Periodontol 44(5):456–462. https://doi.org/10.1111/jcpe.12732

    Article  Google Scholar 

  40. Fi C, Wo W (2021) Periodontal disease and systemic diseases: an overview on recent progresses. J Biol Regul Homeost Agents 35(1 Suppl. 1):1–9

    Google Scholar 

  41. Eke PI, Borgnakke WS, Genco RJ (2020) Recent epidemiologic trends in periodontitis in the USA. Periodontol 82(1):257–267. https://doi.org/10.1111/prd.12323

    Article  Google Scholar 

  42. Guo Z, Gu C, Li S, Gan S, Li Y, Xiang S et al (2021) Periodontal disease and the risk of prostate cancer: a meta-analysis of cohort studies. Int Braz J Urol 47. https://doi.org/10.1590/S1677-5538.IBJU.2020.0333

  43. Hajishengallis G, Lamont RJ (2000) Polymicrobial communities in periodontal disease: their quasi-organismal nature and dialogue with the host. Periodontol 2021:210. https://doi.org/10.1111/prd.12371

    Article  Google Scholar 

  44. Zardawi F, Gul S, Abdulkareem A, Sha A, Yates J (2020) Association between periodontal disease and atherosclerotic cardiovascular diseases: revisited. Front Cardiovasc Med 7:625579. https://doi.org/10.3389/fcvm.2020.625579

    Article  Google Scholar 

  45. Kinane DF, Stathopoulou PG, Papapanou PN (2017) Periodontal diseases. Nat Rev Dis Primers 3(1):1–14

    Article  Google Scholar 

  46. Reynolds MA (2014) Modifiable risk factors in periodontitis: at the intersection of aging and disease. Periodontol 64(1):7–19. https://doi.org/10.1111/prd.12047

    Article  Google Scholar 

  47. Armitage GC (1999 Dec) Development of a classification system for periodontal diseases and conditions. Ann Periodontol 4(1):1–6. https://doi.org/10.1902/annals.1999.4.1.1. PMID: 10863370

  48. Lang NP, Tonetti MS (2003) Periodontal risk assessment (PRA) for patients in supportive periodontal therapy (SPT). Oral Health Prev Dent 1(1):7–16

    Google Scholar 

  49. Monsarrat P, Bernard D, Marty M, Cecchin-Albertoni C, Doumard E, Gez L et al (2022) Systemic periodontal risk score using an innovative machine learning strategy: an observational study. J Pers Med 12(2). https://doi.org/10.3390/jpm12020217

  50. Özmeric N, Kostioutchenko I, Hägler G, Frentzen M, Jervøe-Storm P-M (2008) Cone-beam computed tomography in assessment of periodontal ligament space: in vitro study on artificial tooth model. Clin Oral Investig 12(3):233–239

    Article  Google Scholar 

  51. Choi J-W (2011) Assessment of panoramic radiography as a national oral examination tool: review of the literature. Imaging Sci Dent 41(1):1–6

    Article  Google Scholar 

  52. Lee JH, Kim DH, Jeong SN, Choi SH (2018) Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci 48(2):114–123. https://doi.org/10.5051/jpis.2018.48.2.114

    Article  Google Scholar 

  53. Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A et al (2019) Deep learning for the radiographic detection of periodontal bone loss. Sci Rep 9(1):8495. https://doi.org/10.1038/s41598-019-44839-3

    Article  Google Scholar 

  54. Chang HJ, Lee SJ, Yong TH, Shin NY, Jang BG, Kim JE et al (2020) Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis. Sci Rep 10(1):7531. https://doi.org/10.1038/s41598-020-64509-z

    Article  Google Scholar 

  55. Liu L, Xu J, Huan Y, Zou Z, Yeh SC, Zheng LR (2020) A smart dental health-IoT platform based on intelligent hardware, deep learning, and mobile terminal. IEEE J Biomed Health Inform 24(3):898–906. https://doi.org/10.1109/JBHI.2019.2919916

    Article  Google Scholar 

  56. Huang W, Wu J, Mao Y, Zhu S, Huang GF, Petritis B, Huang RP (2020) Developing a periodontal disease antibody array for the prediction of severe periodontal disease using machine learning classifiers. J Periodontol 91(2):232–243. https://doi.org/10.1002/jper.19-0173

    Article  Google Scholar 

  57. Farhadian M, Shokouhi P, Torkzaban P (2020) A decision support system based on support vector machine for diagnosis of periodontal disease. BMC Res Notes 13(1):337. https://doi.org/10.1186/s13104-020-05180-5

    Article  Google Scholar 

  58. Mayo Clinic. Patient care & health information. Diseases and conditions. Periodontitis. https://www.mayoclinic.org/diseases-conditions/periodontitis/diagnosis-treatment/drc-20354479

  59. Mayo Clinic. Patient care & health information. Diseases and conditions. Mouth Cancer. https://www.mayoclinic.org/diseases-conditions/mouth-cancer/symptoms-causes/syc-20350997

  60. Cancer Research UK (2017 Nov 29) Together we will beat cancer. https://news.cancerresearchuk.org/2017/11/29/men-twice-as-likely-to-develop-oral-cancer/

  61. Johnson S (2020, Sept 1) Medically reviewed by Yamini Ranchod. Healthline. Oral cancer. https://www.healthline.com/health/oral-cancer

  62. Cancer.Net, ASCO, Types of cancer – Head and neck cancer. https://www.cancer.net/cancer-types/head-and-neck-cancer/diagnosis

  63. American Academy of Oral Medicine (Producer) (2019) Subject: oral cancer screening. https://www.aaom.com/clinical-practicestatement-oral-cancer-screening.

  64. Khanagar SB, Naik S, Al Kheraif AA, Vishwanathaiah S, Maganur PC, Alhazmi Y et al (2021) Application and performance of artificial intelligence technology in oral cancer diagnosis and prediction of prognosis: a systematic review. Diagnostics (Basel) 11(6). https://doi.org/10.3390/diagnostics11061004

  65. Ilhan B, Lin K, Guneri P, Wilder-Smith P (2020) Improving oral cancer outcomes with imaging and artificial intelligence. J Dent Res 99(3):241–248. https://doi.org/10.1177/0022034520902128

    Article  Google Scholar 

  66. Sinevici N, O’Sullivan J (2016) Oral cancer: deregulated molecular events and their use as biomarkers. Oral Oncol 61:12–18. https://doi.org/10.1016/j.oraloncology.2016.07.013

    Article  Google Scholar 

  67. Sankaranarayanan R, Ramadas K, Thomas G, Muwonge R, Thara S, Mathew B, Rajan B (2005) Effect of screening on oral cancer mortality in Kerala, India: a cluster-randomised controlled trial. Lancet 365(9475):1927–1933. https://doi.org/10.1016/s0140-6736(05)66658-5

    Article  Google Scholar 

  68. Shopland DR (1995) Tobacco use and its contribution to early cancer mortality with a special emphasis on cigarette smoking. Environ Health Perspect 103(Suppl 8):131–142. https://doi.org/10.1289/ehp.95103s8131

    Article  Google Scholar 

  69. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E et al (2011) Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 29(32):4294–4301. https://doi.org/10.1200/jco.2011.36.4596

    Article  Google Scholar 

  70. National Center for Health Statistics (2016) Health, United States, 2015: with special feature on racial and ethnic health disparities, Report No. 2016-1232. National Center for Health Statistics, Hyattsville

    Google Scholar 

  71. Grafton-Clarke C, Chen KW, Wilcock J (2019) Diagnosis and referral delays in primary care for oral squamous cell cancer: a systematic review. Br J Gen Pract 69(679):e112–e126. https://doi.org/10.3399/bjgp18X700205

    Article  Google Scholar 

  72. Wan A, Savage NW (2010) Biopsy and diagnostic histopathology in dental practice in Brisbane: usage patterns and perceptions of usefulness. Aust Dent J 55(2):162–169. https://doi.org/10.1111/j.1834-7819.2010.01210.x

    Article  Google Scholar 

  73. Llewellyn CD, Johnson NW, Warnakulasuriya KA (2001) Risk factors for squamous cell carcinoma of the oral cavity in young people – a comprehensive literature review. Oral Oncol 37(5):401–418. https://doi.org/10.1016/s1368-8375(00)00135-4

    Article  Google Scholar 

  74. O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21(2):249–257. https://doi.org/10.1158/1078-0432.ccr-14-0990

    Article  Google Scholar 

  75. Farah CS, Dost F, Do L (2019) Usefulness of optical fluorescence imaging in identification and triaging of oral potentially malignant disorders: a study of VELscope in the LESIONS programme. J Oral Pathol Med 48(7):581–587. https://doi.org/10.1111/jop.12896

    Article  Google Scholar 

  76. Uthoff RD, Song B, Sunny S, Patrick S, Suresh A, Kolur T et al (2018) Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities. PLoS One 13(12):e0207493. https://doi.org/10.1371/journal.pone.0207493

    Article  Google Scholar 

  77. Heidari AE, Pham TT, Ifegwu I, Burwell R, Armstrong WB, Tjoson T et al (2020) The use of optical coherence tomography and convolutional neural networks to distinguish normal and abnormal oral mucosa. J Biophotonics 13(3):e201900221. https://doi.org/10.1002/jbio.201900221

    Article  Google Scholar 

  78. Friedman-Kien AE (1981) Disseminated Kaposi’s sarcoma syndrome in young homosexual men. J Am Acad Dermatol 5(4):468–471. https://doi.org/10.1016/s0190-9622(81)80010-2

    Article  Google Scholar 

  79. Pakfetrat A, Falaki F, Delavarian Z, Dalirsani Z, Sanatkhani M, Zabihi Marani M (2015) Oral manifestations of human immunodeficiency virus-infected patients. Iran J Otorhinolaryngol 27(78):43–54

    Google Scholar 

  80. Lancet T (2017) The global HIV/AIDS epidemic-progress and challenges. Lancet 390(10092):333. https://doi.org/10.1016/S0140-6736(17)31920-7

    Article  Google Scholar 

  81. HIV in the United Arab Emirates. The Borgen Project. 2019 Dec 18. https://borgenproject.org/hiv-in-the-united-arab-emirates/

  82. Indrastiti RK, Wardhany II, Soegyanto AI (2020) Oral manifestations of HIV: can they be an indicator of disease severity? (A systematic review). Oral Dis 26(Suppl 1):133–136. https://doi.org/10.1111/odi.13394

    Article  Google Scholar 

  83. Ottria L, Lauritano D, Oberti L, Candotto V, Cura F, Tagliabue A, Tettamanti L (2018) Prevalence of HIV-related oral manifestations and their association with HAART and CD4+ T cell count: a review. J Biol Regul Homeost Agents 32(2 Suppl. 1):51–59

    Google Scholar 

  84. Ahlström MG, Ronit A, Omland LH, Vedel S, Obel N (2019) Algorithmic prediction of HIV status using nation-wide electronic registry data. EClinicalMedicine 17:100203. https://doi.org/10.1016/j.eclinm.2019.10.016

    Article  Google Scholar 

  85. Krakower DS, Gruber S, Hsu K, Menchaca JT, Maro JC, Kruskal BA et al (2019) Development and validation of an automated HIV prediction algorithm to identify candidates for pre-exposure prophylaxis: a modelling study. Lancet HIV 6(10):e696–e704. https://doi.org/10.1016/s2352-3018(19)30139-0

    Article  Google Scholar 

  86. Marcus JL, Hurley LB, Krakower DS, Alexeeff S, Silverberg MJ, Volk JE (2019) Use of electronic health record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: a modelling study. Lancet HIV 6(10):e688–e695. https://doi.org/10.1016/s2352-3018(19)30137-7

    Article  Google Scholar 

  87. Wray TB, Luo X, Ke J, Pérez AE, Carr DJ, Monti PM (2019) Using smartphone survey data and machine learning to identify situational and contextual risk factors for HIV risk behavior among men who have sex with men who are not on PrEP. Prev Sci 20(6):904–913. https://doi.org/10.1007/s11121-019-01019-z

    Article  Google Scholar 

  88. Young SD, Yu W, Wang W (2017) Toward automating HIV identification: machine learning for rapid identification of HIV-related social media data. J Acquir Immune Defic Syndr (1999) 74(Suppl 2):S128–S131. https://doi.org/10.1097/QAI.0000000000001240

    Article  Google Scholar 

  89. Marcus JL, Sewell WC, Balzer LB, Krakower DS (2020) Artificial intelligence and machine learning for HIV prevention: emerging approaches to ending the epidemic. Curr HIV/AIDS Rep 17(3):171–179. https://doi.org/10.1007/s11904-020-00490-6

    Article  Google Scholar 

  90. Eweka O, Agbelusi G, Odukoya O (2012) Prevalence of oral lesions and the effects of HAART in adult HIV patients attending a tertiary hospital in Lagos, Nigeria. Open J Stomatol 2:200–205. https://doi.org/10.4236/ojst.2012.23036

    Article  Google Scholar 

  91. Petersson EE, Andersson L, Sörensen S (1997) Traumatic oral vs non-oral injuries. Swed Dent J 21(1–2):55–68

    Google Scholar 

  92. Akin A, Uysal S, Cehreli ZC (2011) Segmental alveolar process fracture involving primary incisors: treatment and 24-month follow up. Dent Traumatol 27(1):63–66. https://doi.org/10.1111/j.1600-9657.2010.00953.x

    Article  Google Scholar 

  93. Top Doctor’s United Kingdom. Dental trauma. https://www.topdoctors.co.uk/medical-dictionary/dental-trauma#Treatments

  94. Lam R (2016) Epidemiology and outcomes of traumatic dental injuries: a review of the literature. Aust Dent J 61:4–20. https://doi.org/10.1111/adj.12395

    Article  Google Scholar 

  95. Da Silva Assunção LR, Ferelle A, Iwakura ML, Cunha RF (2009) Effects on permanent teeth after luxation injuries to the primary predecessors: a study in children assisted at an emergency service. Dent Traumatol 25(2):165–170. https://doi.org/10.1111/j.1600-9657.2008.00759.x

    Article  Google Scholar 

  96. Robertson A, Norén JG (2001) Knowledge-based system for structured examination, diagnosis and therapy in treatment of traumatised teeth. Dent Traumatol 17(1):5–9. https://doi.org/10.1034/j.1600-9657.2001.170102.x

    Article  Google Scholar 

  97. Ozer S, Yilmaz EI, Bayrak S, Tunc ES (2012) Parental knowledge and attitudes regarding the emergency treatment of avulsed permanent teeth. Eur J Dent 6(4):370–375

    Article  Google Scholar 

  98. Bayrak S, Tunc ES, Sari E (2012) Evaluation of elementary school teachers’ knowledge and attitudes about immediate emergency management of traumatic dental injuries. Oral Health Prev Dent 10(3):253–258

    Google Scholar 

  99. Vidović D, Gorseta K, Bursac D, Glavina D, Skrinjarić T (2014) Taekwondo coaches knowledge about prevention and management of dental trauma. Coll Antropol 38(2):681–684

    Google Scholar 

  100. Nasr IH, Papineni McIntosh A, Mustafa S, Cronin A (2013) Professional knowledge of accident and emergency doctors on the management of dental injuries. Community Dent Health 30(4):234–240

    Google Scholar 

  101. Djemal S, Singh P (2016) Smartphones and dental trauma: the current availability of apps for managing traumatic dental injuries. Dent Traumatol 32(1):52–57. https://doi.org/10.1111/edt.12217

    Article  Google Scholar 

  102. Sajja PS, Akerkar R (2010) Knowledge-based systems for development. Adv Knowl Based Syst Model Appl Res 1:1–11

    Google Scholar 

  103. Grischke J, Johannsmeier L, Eich L, Griga L, Haddadin S (2020) Dentronics: towards robotics and artificial intelligence in dentistry. Dental Mater 36(6):765–778. https://doi.org/10.1016/j.dental.2020.03.021

    Article  Google Scholar 

  104. Kostiuk MBB (2022 Jan). Trauma assessment. [Updated 2021 Jul 28]. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island. Available from: https://www.ncbi.nlm.nih.gov/books/NBK555913/

  105. Kurt Bayrakdar S, Orhan K, Bayrakdar IS, Bilgir E, Ezhov M, Gusarev M, Shumilov E (2021) A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med Imaging 21(1):86. https://doi.org/10.1186/s12880-021-00618-z

    Article  Google Scholar 

  106. Gampel NE, Punjabi AP (2019 Jan 15) Management of dental trauma. Drug & diseases. Dentistry. https://emedicine.medscape.com/article/1799897-overview

  107. Srour ML, Farley E, Mpinga EK (2022) Lao Noma survivors: a case series, 2002–2020. Am J Trop Med Hyg. https://doi.org/10.4269/ajtmh.21-1079

  108. Park J, Kim S, Shin SW, Lyu CJ, Kim D (2022) Noma disease (cancrum oris, orofacial gangrene) in an acute myeloid leukemia patient: a case report. J Med Case Rep 16(1):97. https://doi.org/10.1186/s13256-022-03317-7

    Article  Google Scholar 

  109. Speiser S, Langridge B, Birkl MM, Kubiena H, Rodgers W (2021) Update on Noma: systematic review on classification, outcomes and follow-up of patients undergoing reconstructive surgery after Noma disease. BMJ Open 11(8):e046303. https://doi.org/10.1136/bmjopen-2020-046303

    Article  Google Scholar 

  110. Srour ML et al (2017) Noma: overview of a neglected disease and human rights violation. Am J Trop Med Hyg 96(2):268–274. https://doi.org/10.4269/ajtmh.16-0718

    Article  Google Scholar 

  111. Marck KW, de Bruijn HP, Schmid F, Meixner J, van Wijhe M, van Poppelen R (1998) Noma: the Sokoto approach. Eur J Plast Surg 21:277–280

    Article  Google Scholar 

  112. Montandon D, Lehmann C, Chami N (1991) The surgical treatment of Noma. Plast Reconstr Surg 87(1):76–86. https://doi.org/10.1097/00006534-199101000-00013

    Article  Google Scholar 

  113. Mohammed MI, Cadd B, Peart G, Gibson I (2018) Augmented patient-specific facial prosthesis production using medical imaging modelling and 3D printing technologies for improved patient outcomes. Virtual Phys Prototyping 13(3):164–176. https://doi.org/10.1080/17452759.2018.1446122

    Article  Google Scholar 

  114. Jazayeri HE, Kang S, Masri RM, Kuhn L, Fahimipour F, Vanevenhoven R et al (2018) Advancements in craniofacial prosthesis fabrication: a narrative review of holistic treatment. J Adv Prosthodont 10(6):430–439. https://doi.org/10.4047/jap.2018.10.6.430

    Article  Google Scholar 

  115. Mine Y, Suzuki S, Eguchi T, Murayama T (2020) Applying deep artificial neural network approach to maxillofacial prostheses coloration. J Prosthodont Res 64(3):296–300

    Article  Google Scholar 

  116. Anthony PM, Kahnberg K-E, Andersson L (2014) Essentials of oral and maxillofacial surgery. Wiley Blackwell, Chichester, pp 297–315

    Google Scholar 

  117. Kruppa K, Kruger E, Vorster C, der Linde JV (2021) Cleft lip and/or palate and associated risks in lower-middle-income countries: a systematic review. Cleft Palate Craniofac J. https://doi.org/10.1177/10556656211018952

  118. Boyles AL, DeRoo LA, Lie RT, Taylor JA, Jugessur A, Murray JC, Wilcox AJ (2010) Maternal alcohol consumption, alcohol metabolism genes, and the risk of oral clefts: a population-based case-control study in Norway, 1996–2001. Am J Epidemiol 172(8):924–931. https://doi.org/10.1093/aje/kwq226

    Article  Google Scholar 

  119. Beaty TH, Ruczinski I, Murray JC, Marazita ML, Munger RG, Hetmanski JB et al (2011) Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate. Genet Epidemiol 35(6):469–478. https://doi.org/10.1002/gepi.20595

    Article  Google Scholar 

  120. Wu T, Liang KY, Hetmanski JB, Ruczinski I, Fallin MD, Ingersoll RG et al (2010) Evidence of gene-environment interaction for the IRF6 gene and maternal multivitamin supplementation in controlling the risk of cleft lip with/without cleft palate. Hum Genet 128(4):401–410. https://doi.org/10.1007/s00439-010-0863-y

    Article  Google Scholar 

  121. Barnes S. Teachme anatomy. Development of the face and palate. https://teachmeanatomy.info/the-basics/embryology/head-neck/face-palate/

  122. Nyberg DA, Hegge FN, Kramer D, Mahony BS, Kropp RJ (1993 June) Premaxillary protrusion: a sonographic clue to bilateral cleft lip and palate. J Ultrasound Med 12(6):331–335. https://doi.org/10.7863/jum.1993.12.6.331. PMID: 8515530

  123. Young JI, Slifer S, Hecht JT, Blanton SH (2021) DNA methylation variation is identified in monozygotic twins discordant for non-syndromic cleft lip and palate. Front Cell Dev Biol 9:656865. https://doi.org/10.3389/fcell.2021.656865

    Article  Google Scholar 

  124. Agarwal S, Hallac RR, Mishra R, Li C, Daescu O, Kane AA (2018) Image based detection of craniofacial abnormalities using feature extraction by classical convolutional neural network. 2018 IEEE 8th international conference on computational advances in bio and medical sciences (ICCABS), pp 1–6

    Google Scholar 

  125. Alam MK, Alfawzan AA (2020) Dental characteristics of different types of cleft and non-cleft individuals. Front Cell Dev Biol 8. https://doi.org/10.3389/fcell.2020.00789

  126. Alam MK, Alfawzan AA (2020) Evaluation of Sella Turcica bridging and morphology in different types of cleft patients. Front Cell Dev Biol 8. https://doi.org/10.3389/fcell.2020.00656

  127. Li Y, Cheng J, Mei H, Ma H, Chen Z, Li Y (2019) CLPNet: cleft lip and palate surgery support with deep learning. Annu Int Conf IEEE Eng Med Biol Soc 2019:3666–3672. https://doi.org/10.1109/embc.2019.8857799

    Article  Google Scholar 

  128. Lin G, Kim PJ, Baek SH, Kim HG, Kim SW, Chung JH (2021) Early prediction of the need for orthognathic surgery in patients with repaired unilateral cleft lip and palate using machine learning and longitudinal lateral cephalometric analysis data. J Craniofac Surg 32(2):616–620. https://doi.org/10.1097/scs.0000000000006943

    Article  Google Scholar 

  129. Park HM, Kim PJ, Kim HG, Kim S, Baek SH (2015) Prediction of the need for orthognathic surgery in patients with cleft lip and/or palate. J Craniofac Surg 26(4):1159–1162. https://doi.org/10.1097/scs.0000000000001605

    Article  Google Scholar 

  130. Schiebl J, Bauer FX, Grill F, Loeffelbein DJ (2020) RapidNAM: algorithm for the semi-automated generation of nasoalveolar molding device designs for the presurgical treatment of bilateral cleft lip and palate. IEEE Trans Biomed Eng 67(5):1263–1271. https://doi.org/10.1109/tbme.2019.2934907

    Article  Google Scholar 

  131. Pocket dentistry. Chapter 29: Cleft lip and palate. https://pocketdentistry.com/cleft-lip-and-palate-7/

  132. Gaddey HL (2017 Nov–Dec) Oral manifestations of systemic disease. Gen Dent 65(6):23–29. PMID: 29099362

    Google Scholar 

  133. Cheraskin E (1958) Oral manifestations of systemic diseases. J Natl Med Assoc 50(4):241

    Google Scholar 

  134. Bhalla N, Nudell Y, Thakkar J, Dym H (2020) Oral manifestation of systemic diseases. Dent Clin 64(1):191–207

    Google Scholar 

  135. Mavragani CP, Moutsopoulos HM (2014) Sjögren syndrome. CMAJ 186(15):E579–E586

    Article  Google Scholar 

  136. Fox RI, Stern M, Michelson P (2000) Update in Sjögren syndrome. Curr Opin Rheumatol 12(5):391–398

    Article  Google Scholar 

  137. Porter S, Mercadante V, Fedele S (2017) Oral manifestations of systemic disease. Br Dent J 223(9):683–691

    Article  Google Scholar 

  138. Batistella EÂ, Sabino da Silva R, Rivero ERC, Silva CAB (2021) Prevalence of oral mucosal lesions in patients with pemphigus vulgaris: a systematic review and meta-analysis. J Oral Pathol Med 50(8):750–757

    Article  Google Scholar 

  139. Kuriachan D, Suresh R, Janardhanan M, Savithri V (2015) Oral lesions: the clue to diagnosis of pemphigus vulgaris. Case Rep Dent 2015:593940

    Google Scholar 

  140. Macena M, Praxedes D, De Oliveira AD, Paula D, Barros M, Júnior AS et al (2022) Prevalence of iron deficiency anemia in Brazilian women of childbearing age: a systematic review with meta-analysis. PeerJ 10:e12959

    Article  Google Scholar 

  141. Kaur L, Puri M, Saraswathy KN, Trivedi SS, Sachdeva MP (2018) Recurrent pregnancy losses vis-à-vis anemia and vitamin (folate/B12) imbalance. Int J Health Gov 23:281

    Article  Google Scholar 

  142. Halim N, Kalkur C, Padmashree S, Rangare AL (2018) Diagnosis of iron deficiency anemia through oral manifestation – a case report. J Online J Case Stud 7(5):5–7

    Google Scholar 

  143. DeLoughery TG (2017) Iron deficiency anemia. Med Clin 101(2):319–332

    Google Scholar 

  144. Toh B-H, van Driel IR, Gleeson PA (1997) Pernicious anemia. N Engl J Med 337(20):1441–1448

    Article  Google Scholar 

  145. Anitha N, Appadurai P, Anitha N (2020) Anemia and it’s oral manifestation. Eur J Mol Clin Med 7(8):1715–1719

    Google Scholar 

  146. Döhner H, Weisdorf DJ, Bloomfield CD (2015) Acute myeloid leukemia. N Engl J Med 373(12):1136–1152

    Article  Google Scholar 

  147. Francisconi CF, Caldas RJ, Oliveira Martins LJ, Fischer Rubira CM, da Silva Santos PS (2016) Leukemic oral manifestations and their management. Asian Pac J Cancer Prev 17(3):911–915

    Article  Google Scholar 

  148. Quispe RA, Aguiar EM, de Oliveira CT, Neves ACX, da Silva Santos PS (2021) Oral manifestations of leukemia as part of early diagnosis. Hematol Transfus Cell Ther 44(3):392–401

    Article  Google Scholar 

  149. Egeler RM, D’Angio GJ (1995) Langerhans cell histiocytosis. J Pediatr 127(1):1–11

    Article  Google Scholar 

  150. Abdull Gaffar B, Awadhi F (2020) Oral manifestations of Langerhans cell histiocytosis with unusual histomorphologic features. Ann Diagn Pathol 47:151536

    Article  Google Scholar 

  151. Madrigal-Martínez-Pereda C, Guerrero-Rodriguez V, Guisado-Moya B, Meniz-Garcia C (2009) Langerhans cell histiocytosis: literature review and descriptive analysis of oral manifestations. Med Oral Patol Oral Cir Bucal 14(5):E222–E228

    Google Scholar 

  152. Rohani B (2019) Oral manifestations in patients with diabetes mellitus. World J Diabetes 10(9):485

    Article  Google Scholar 

  153. Mauri-Obradors E, Estrugo-Devesa A, Jané-Salas E, Viñas M, López-López J (2017) Oral manifestations of diabetes mellitus. A systematic review. Med Oral Patol Oral Cir Bucal 22(5):e586–e594. https://doi.org/10.4317/medoral.21655

    Article  Google Scholar 

  154. de Lima DC, Nakata GC, Balducci I, Almeida JD (2008) Oral manifestations of diabetes mellitus in complete denture wearers. J Prosthet Dent 99(1):60–65

    Article  Google Scholar 

  155. Islam SMS, Niessen LW, Seissler J, Ferrari U, Biswas T, Islam A, Lechner A (2015) Diabetes knowledge and glycemic control among patients with type 2 diabetes in Bangladesh. Springerplus 4(1):1–7

    Article  Google Scholar 

  156. Dar-Odeh NS, Alsmadi OM, Bakri F, Abu-Hammour Z, Shehabi AA, Al-Omiri MK et al (2010) Predicting recurrent aphthous ulceration using genetic algorithms-optimized neural networks. Adv Appl Bioinform Chem 3:7–13. https://doi.org/10.2147/aabc.s10177

    Article  Google Scholar 

  157. Peres MA, Macpherson LM, Weyant RJ, Daly B, Venturelli R, Mathur MR et al (2019) Oral diseases: a global public health challenge. Lancet 394(10194):249–260

    Article  Google Scholar 

  158. Jin L, Lamster I, Greenspan J, Pitts N, Scully C, Warnakulasuriya S (2016) Global burden of oral diseases: emerging concepts, management and interplay with systemic health. Oral Dis 22(7):609–619

    Article  Google Scholar 

  159. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C (2005) The global burden of oral diseases and risks to oral health. Bull World Health Organ 83:661–669

    Google Scholar 

  160. Petersen PE (2003) The World Oral Health report 2003: continuous improvement of oral health in the 21st century – the approach of the WHO Global Oral Health Programme. Community Dent Oral Epidemiol 31:3–24

    Article  Google Scholar 

  161. Stone C (2013) Cleft lip and palate: etiology, epidemiology, preventive and intervention strategies. Anat Physiol 4(03). https://doi.org/10.4172/2161-0940.1000150

  162. Dye BA (2017) The global burden of oral disease: Research and public health significance. J Dent Res 96(4):361–363. https://doi.org/10.1177/0022034517693567

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaikh, K., Vivek Bekal, S., Marei, H.F.A., Elsayed, W.S.M., Surdilovic, D., Jawad, L.A. (2023). Most Common Oral Health Conditions. In: Artificial Intelligence in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-031-19715-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19715-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19714-7

  • Online ISBN: 978-3-031-19715-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics