Skip to main content

Drinfeld Modules over Finite Fields

  • Chapter
  • First Online:
Drinfeld Modules

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 296))

  • 1081 Accesses

Abstract

In this chapter we study Drinfeld modules defined over a finite field \(k= \mathbb {F}_{q^n}\). What distinguishes the theory of these Drinfeld modules from the general theory is that the Frobenius π := τ n commutes with every other element of \(k\!\left \{\tau \right \}\), hence A[π] is a subring of \( \operatorname {\mathrm {End}}_k(\phi )\) for any Drinfeld module ϕ; this simple observation is the starting point of the main results of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If Δ is an algebra over a field L, Δ⊂ Δ is a subalgebra, and L′L is a field extension, then ΔL L′ is a subalgebra of the L′-algebra Δ ⊗L L′ since L′ is a flat L-module; see [DF04, p. 400].

  2. 2.

    Some assumptions are necessary since not every domain can be embedded into a division ring; see [Coh95, p. 9].

  3. 3.

    \(F_{\mathfrak {l}}\) is flat over \(A_{\mathfrak {l}}\); cf. [DF04, p. 400].

  4. 4.

    The key point here is that, up to conjugation, \(k\!\left \{\tau \right \}\) is the unique maximal \(\mathbb {F}_q[\pi ]\)-order in k(τ); see [Rei03, §21].

  5. 5.

    It seems quite challenging to generalize Elkies’ method to higher rank Drinfeld modules. As far as I know, currently there are no known examples of Drinfeld modules ϕ of rank ≥ 3 over F with \( \operatorname {\mathrm {End}}(\phi )=A\) having infinitely many supersingular reductions.

References

  1. Greg W. Anderson, t-motives, Duke Math. J. 53 (1986), no. 2, 457–502.

    MathSciNet  MATH  Google Scholar 

  2. Bruno Anglès, On some characteristic polynomials attached to finite Drinfeld modules. Manuscripta Math., 93 (1997), no. 3, 369–379.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alp Bassa and Peter Beelen, On the Deuring polynomial for Drinfeld modules in Legendre form, Acta Arith. 186 (2018), no. 2, 179–190.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Boyer, Mauvaise réduction des variétés de Drinfeld et correspondance de Langlands locale, Invent. Math. 138 (1999), no. 3, 573–629.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. L. Brown, Singular moduli and supersingular moduli of Drinfeld modules, Invent. Math. 110 (1992), no. 2, 419–439.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. M. Cohn, Skew fields, Encyclopedia of Mathematics and its Applications, vol. 57, Cambridge University Press, Cambridge, 1995, Theory of general division rings.

    Google Scholar 

  7. David S. Dummit and Richard M. Foote, Abstract algebra, third ed., John Wiley & Sons, Inc., Hoboken, NJ, 2004.

    MATH  Google Scholar 

  8. _________ , Elliptic modules. II, Mat. Sb. (N.S.) 102(144) (1977), no. 2, 182–194, 325.

    Google Scholar 

  9. Ernst-Ulrich Gekeler, Zur Arithmetik von Drinfeld-Moduln, Math. Ann. 262 (1983), no. 2, 167–182.

    Article  MathSciNet  MATH  Google Scholar 

  10. _________ , On finite Drinfeld modules, J. Algebra 141 (1991), no. 1, 187–203.

    Article  MathSciNet  MATH  Google Scholar 

  11. _________ , On the arithmetic of some division algebras, Comment. Math. Helv. 67 (1992), no. 2, 316–333.

    Article  MathSciNet  MATH  Google Scholar 

  12. _________ , Frobenius distributions of Drinfeld modules over finite fields, Trans. Amer. Math. Soc. 360 (2008), no. 4, 1695–1721.

    Article  MathSciNet  MATH  Google Scholar 

  13. Sumita Garai and Mihran Papikian, Endomorphism rings of reductions of Drinfeld modules, J. Number Theory 212 (2020), 18–39.

    Article  MathSciNet  MATH  Google Scholar 

  14. Everett W. Howe and Kiran S. Kedlaya, Every positive integer is the order of an ordinary abelian variety over \(\mathbb {F}_2\), Res. Number Theory. 7 (2021), no. 4, 59.

    Google Scholar 

  15. Liang-Chung Hsia and Jing Yu, On characteristic polynomials of geometric Frobenius associated to Drinfeld modules, Compositio Math. 122 (2000), no. 3, 261–280.

    Article  MathSciNet  MATH  Google Scholar 

  16. _________ , Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002.

    Google Scholar 

  17. Gérard Laumon, Cohomology of Drinfeld modular varieties. Part I, Cambridge Studies in Advanced Mathematics, vol. 41, Cambridge University Press, Cambridge, 1996, Geometry, counting of points and local harmonic analysis.

    Google Scholar 

  18. Richard Pink, The Galois representations associated to a Drinfeld module in special characteristic. II. Openness, J. Number Theory 116 (2006), no. 2, 348–372.

    Article  MathSciNet  MATH  Google Scholar 

  19. _________ , Drinfeld modules with no supersingular primes, Internat. Math. Res. Notices (1998), no. 3, 151–159.

    Google Scholar 

  20. I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003, Corrected reprint of the 1975 original, With a foreword by M. J. Taylor.

    Google Scholar 

  21. _________ , Number theory in function fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002.

    Google Scholar 

  22. Andreas Schweizer, On the Drinfeld modular polynomial ΦT(X, Y ), J. Number Theory 52 (1995), no. 1, 53–68.

    Article  MathSciNet  MATH  Google Scholar 

  23. _________ , On singular and supersingular invariants of Drinfeld modules, Ann. Fac. Sci. Toulouse Math. (6) 6 (1997), no. 2, 319–334.

    Google Scholar 

  24. _________ , The arithmetic of elliptic curves, second ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009.

    Google Scholar 

  25. Raymond van Bommel, Edgar Costa, Wanlin Li, Bjorn Poonen, and Alexander Smith, Abelian varieties of prescribed order over finite fields, arXiv 2106.13651 [math.NT] (2021).

    Google Scholar 

  26. Jiu-Kang Yu, Isogenies of Drinfeld modules over finite fields, J. Number Theory 54 (1995), no. 1, 161–171.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papikian, M. (2023). Drinfeld Modules over Finite Fields. In: Drinfeld Modules. Graduate Texts in Mathematics, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-031-19707-9_4

Download citation

Publish with us

Policies and ethics