Skip to main content

Kinematic Shakedown Analysis of Structures Using the Stabilized Integrated Radial Basis Function-Based Mesh-Free Method

  • Conference paper
  • First Online:
Computational Intelligence Methods for Green Technology and Sustainable Development (GTSD 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 567))

  • 381 Accesses

Abstract

This paper presents a novel formulation for kinematic shakedown analysis of structures, in which the displacement field is approximated using the stabilized integrated radial basis function (iRBF) mesh-free method. The essential boundary conditions are enforced directly owing to the Kronecker delta property of the iRBF shape functions. With the use of second-order cone programming (SOCP), the size of the resulting optimization problem is kept to be minimum. Several benchmark problems governed by different yield criteria are investigated to test the computational aspects of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaydon, F.A., McCrum, A.W.: A theoretical investigation of the yield point loading of a square plate with a central circular hole. J. Mech. Phys. Solids. 2, 156–169 (1954). https://doi.org/10.1016/0022-5096(54)90022-8

  2. Melan, E.: Zur plastizität des räumlichen kontinuums. Ingenieur-Archiv. 9, 116–126 (1938). https://doi.org/10.1007/BF02084409

  3. Koiter, W.T.: General theorems for elastic plastic solids. Prog. solid Mech. 167–221 (1960)

    Google Scholar 

  4. Ponter, A.R.S., Fuschi, P., Engelhardt, M.: Limit analysis for a general class of yield conditions. Eur. J. Mech. 19, 401–421 (2000). https://doi.org/10.1016/S0997-7538(00)00170-4

  5. Heitzer, M., Staat, M.: FEM-computation of load carrying capacity of highly loaded passive components by direct methods. Nucl. Eng. Des. 193, 349–358 (1999). https://doi.org/10.1016/S0029-5493(99)00190-9

  6. Simon, J.-W., Weichert, D.: Numerical lower bound shakedown analysis of engineering structures. Comput. Methods Appl. Mech. Eng. 200, 2828–2839 (2011). https://doi.org/10.1016/j.cma.2011.05.006

  7. Garcea, G., Leonetti, L.: A unified mathematical programming formulation of strain driven and interior point algorithms for shakedown and limit analysis. Int. J. Numer. Methods Eng. 88, 1085–1111 (2011). https://doi.org/10.1002/nme.3188

  8. Christiansen, E., Andersen, K.D.: Computation of collapse states with von Mises type yield condition. Int. J. Numer. Methods Eng. 46, 1185–1202 (1999). https://doi.org/10.1002/(SICI)1097-0207(19991120)46:8<1185::AID-NME743>3.0.CO;2-N

  9. Makrodimopoulos, A., Martin, C.: Lower bound limit analysis of cohesivefrictional materials using secondorder cone programming. Int. J. Numer. Methods Eng. 66, 604–634 (2006). https://doi.org/10.1002/nme.1567

  10. Carvelli, V., Cen, Z.Z., Liu, Y., Maier, G.: Shakedown analysis of defective pressure vessels by a kinematic approach. Arch. Appl. Mech. 69, 751–764 (1999). https://doi.org/10.1007/s004190050254

  11. Gro\(\upbeta \)-Weege, J.: On the numerical assessment of the safety factor of elastic-plastic structures under variable loading. Int. J. Mech. Sci. 39, 417–433 (1997). https://doi.org/10.1016/S0020-7403(96)00039-2

  12. Zouain, N., Borges, L., Silveira, J.L.: An algorithm for shakedown analysis with nonlinear yield functions. Comput. Methods Appl. Mech. Eng. 191, 2463–2481 (2002). https://doi.org/10.1016/S0045-7825(01)00374-7

  13. Garcea, G., Armentano, G., Petrolo, S., Casciaro, R.: Finite element shakedown analysis of twodimensional structures. Int. J. Numer. Methods Eng. 63, 1174–1202 (2005). https://doi.org/10.1002/nme.1316

  14. Krabbenhøft, K., Lyamin, A.V., Sloan, S.: Bounds to shakedown loads for a class of deviatoric plasticity models. Comput. Mech. 39, 879–888 (2007). https://doi.org/10.1007/s00466-006-0076-3

  15. Le, C.V., Tran, T.D., Pham, D.C.: Rotating plasticity and nonshakedown collapse modes for elastic-plastic bodies under cyclic loads. Int. J. Mech. Sci. 111, 55–64 (2016). https://doi.org/10.1016/j.ijmecsci.2016.04.001

  16. Tran, T.N., Liu, G.R., NguyenXuan, H., NguyenThoi, T.: An edgebased smoothed finite element method for primal-dual shakedown analysis of structures. Int. J. Numer. Methods Eng. 82, 917–938 (2010). https://doi.org/10.1002/nme.2804

  17. NguyenXuan, H., Rabczuk, T., NguyenThoi, T., Tran, T.N., NguyenThanh, N.: Computation of limit and shakedown loads using a nodebased smoothed finite element method. Int. J. Numer. Methods Eng. 90, 287–310 (2012). https://doi.org/10.1002/nme.3317

  18. Ho, P.L.H., Le, C. V, Chu, T.Q.: The equilibrium cell-based smooth finite element method for shakedown analysis of structures. Int. J. Comput. Methods 16, 1840013 (2019). https://doi.org/10.1142/S0219876218400133

  19. Liu, Y.H., Zhang, X.F., Cen, Z.: Lower bound shakedown analysis by the symmetric Galerkin boundary element method. Int. J. Plasticity 21(1), 21–42 (2005). https://doi.org/10.1016/j.ijplas.2004.01.003

  20. Do, H.V., Nguyen-Xuan, H.: Limit and shakedown isogeometric analysis of structures based on Bézier extraction. Eur. J. Mech. 63, 149–164 (2017). https://doi.org/10.1016/j.euromechsol.2017.01.004

  21. Do, H.V., Nguyen-Xuan, H.: Computation of limit and shakedown loads for pressure vessel components using isogeometric analysis based on Lagrange extraction. Int. J. Press. Vessel. Pip. 169, 57–70 (2019). https://doi.org/10.1016/j.ijpvp.2018.11.012

  22. Zhou, S., Liu, Y., Wang, D., Wang, K., Yu, S.: Upper bound shakedown analysis with the nodal natural element method. Comput. Mech. 54, 1111–1128 (2014). https://doi.org/10.1007/s00466-014-1043-z

  23. Ho, P.L.H., Le, C.: V: A stabilized iRBF mesh-free method for quasi-lower bound shakedown analysis of structures. Comput. Struct. 228, 106157 (2020). https://doi.org/10.1016/j.compstruc.2019.106157

  24. König, J.A.: Shakedown of Elastic-plastic Structures. Elsevier (2012)

    Google Scholar 

  25. Chen, J., Wu, C., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin meshfree methods. Int. J. Numer. Methods Eng. 50, 435–466 (2001). https://doi.org/10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A

  26. Le, C.V., Gilbert, M., Askes, H.: Limit analysis of plates using the EFG method and secondorder cone programming. Int. J. Numer. Methods Eng. 78, 1532–1552 (2009). https://doi.org/10.1002/nme.2535

  27. Le, C. V, NguyenXuan, H., Askes, H., Bordas, S.P.A., Rabczuk, T., NguyenVinh, H.: A cellbased smoothed finite element method for kinematic limit analysis. Int. J. Numer. Methods Eng. 83, 1651–1674 (2010). https://doi.org/10.1002/nme.2897

  28. Chen, S., Liu, Y., Cen, Z.: Lowerbound limit analysis by using the EFG method and nonlinear programming. Int. J. Numer. Methods Eng. 74, 391–415 (2008). https://doi.org/10.1002/nme.2177

  29. Liu, Y.H., Zhang, X.F., Cen, Z.: Lower bound shakedown analysis by the symmetric Galerkin boundary element method. Int. J. Plast. 21, 21–42 (2005). https://doi.org/10.1016/j.euromechsol.2003.09.008

  30. Genna, F.: A nonlinear inequality, finite element approach to the direct computation of shakedown load safety factors. Int. J. Mech. Sci. 30, 769–789 (1988). https://doi.org/10.1016/0020-7403(88)90041-0

  31. Díez, P., Arroyo, M., Huerta, A.: Adaptivity based on error estimation for viscoplastic softening materials. Mech. Cohesivefrictional Mater. An Int. J. Exp. Model. Comput. Mater. Struct. 5, 87–112 (2000). https://doi.org/10.1002/(SICI)1099-1484(200002)5:2<87::AID-CFM86>3.0.CO;2-W

  32. Munoz, J.J., Bonet, J., Huerta, A., Peraire, J.: Upper and lower bounds in limit analysis: adaptive meshing strategies and discontinuous loading. Int. J. Numer. Methods Eng. 77, 471–501 (2009). https://doi.org/10.1002/nme.2421

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canh V. Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ho, P.L.H., Le, C.V., Nguyen, P.H. (2023). Kinematic Shakedown Analysis of Structures Using the Stabilized Integrated Radial Basis Function-Based Mesh-Free Method. In: Huang, YP., Wang, WJ., Quoc, H.A., Le, HG., Quach, HN. (eds) Computational Intelligence Methods for Green Technology and Sustainable Development. GTSD 2022. Lecture Notes in Networks and Systems, vol 567. Springer, Cham. https://doi.org/10.1007/978-3-031-19694-2_21

Download citation

Publish with us

Policies and ethics