Skip to main content

Finding Points on Elliptic Curves with Coppersmith’s Method

  • 242 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13706)

Abstract

Several cryptosystems based on Elliptic Curve Cryptography such as ElGamal and KMOV process the message as a point \(M=(x_0,y_0)\) of an elliptic curve with an equation of the form \(y^2=x^3+ax+b\) over a finite field or a finite ring. In this paper, we present a method to find the small solutions of the former elliptic curve equation. Our method is based on Coppersmith’s technique and enables one to find the solutions \((x_0,y_0)\) when \(|x_0|^3|y_0|^2\) is smaller than the modulus.

Keywords

  • Elliptic curve cryptography
  • Coppersmith’s method
  • Lattice basis reduction
  • Cryptanalysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ajtai, M.: The shortest vector problem in L\({}_{\text{2}}\) is NP-hard for randomized reductions (extended abstract). In: Vitter, J.S. (ed.) Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, 23–26 May 1998, pp. 10–19. ACM (1998)

    Google Scholar 

  2. Boudabra, M., Nitaj, A.: A new public key cryptosystem based on edwards curves. IACR Cryptology ePrint Archive, p. 1051 (2019)

    Google Scholar 

  3. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

    CrossRef  MathSciNet  Google Scholar 

  4. Demytko, N.: A new elliptic curve based analogue of RSA. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 40–49. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_4

    CrossRef  Google Scholar 

  5. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    CrossRef  MathSciNet  Google Scholar 

  6. Galindo, D., Molleví, S.M., Morillo, P., Villar, J.L.: An efficient semantically secure elliptic curve cryptosystem based on KMOV. IACR Cryptology ePrint Archive, p. 37 (2002)

    Google Scholar 

  7. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

    CrossRef  MathSciNet  Google Scholar 

  8. Howgrave-Graham, N.: Finding small roots of univariate modular equations revisited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458

    CrossRef  Google Scholar 

  9. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_18

    CrossRef  MATH  Google Scholar 

  10. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)

    CrossRef  MathSciNet  Google Scholar 

  11. Koyama, K., Maurer, U.M., Okamoto, T., Vanstone, S.A.: New public-key schemes based on elliptic curves over the ring Z\(_{n}\). In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 252–266. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_20

    CrossRef  Google Scholar 

  12. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982). Dec

    CrossRef  MathSciNet  Google Scholar 

  13. May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis, University of Paderborn (2003)

    Google Scholar 

  14. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_31

    CrossRef  Google Scholar 

  15. Nitaj, A., Fouotsa, E.: A new attack on RSA and demytko’s elliptic curve cryptosystem. IACR Cryptology ePrint Archive, p. 1050 (2019)

    Google Scholar 

  16. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    CrossRef  MathSciNet  Google Scholar 

  17. Stroeker, R.J., de Weger, B.M.M.: Solving elliptic diophantine equations: the general cubic case. Acta Arithmetica 87(4), 339–365 (1999)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Nitaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dossou-Yovo, V., Nitaj, A., Togbé, A. (2022). Finding Points on Elliptic Curves with Coppersmith’s Method. In: Poulakis, D., Rahonis, G. (eds) Algebraic Informatics. CAI 2022. Lecture Notes in Computer Science, vol 13706. Springer, Cham. https://doi.org/10.1007/978-3-031-19685-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19685-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19684-3

  • Online ISBN: 978-3-031-19685-0

  • eBook Packages: Computer ScienceComputer Science (R0)