Skip to main content

Infrared Technology for Vascular Abnormality in Finding of Abdominal Aortic Aneurysm

  • Conference paper
  • First Online:
Artificial Intelligence over Infrared Images for Medical Applications and Medical Image Assisted Biomarker Discovery (MIABID 2022, AIIIMA 2022)

Abstract

The heat transfer and flow physics of Abdominal Aortic Aneurysm (AAA) were studied with cardiac cycle to illustrate the cardiac thermal pulse (CTP) of midriff skin surface. An infrared thermography (IRT) evaluation-based on AAA and abdomen skin surface detection method was proposed, respectively. Besides, from CFD rigid-wall and FSI Analysis, the transient bioheat transfer effect resulted in a circular thermal elevation on the temperature profile of midriff skin surface, at both regular body temperature and supine position, under normal clinical temperature. These findings suggest the influence of numerical simulation techniques on the prediction of thermal physics behaviours of AAA and abdominal skin surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lederle, F.A., et al.: Outcomes following endovascular vs open repair of abdominal aortic aneurysm: a randomized trial. JAMA 302(14), 1535–1542 (2009). https://doi.org/10.1001/jama.2009.1426

    Article  Google Scholar 

  2. Chervu, A., Clagett, G.P., Valentine, R.J., Myers, S.I., Rossi, P.J.: Role of physical examination in detection of abdominal aortic aneurysms. Surgery. 117(4), 454–457 (1995). https://doi.org/10.1016/S0039-6060(05)80067-4

    Article  Google Scholar 

  3. Keisler, B., Carter, C.: Abdominal aortic aneurysm. Am Fam Physician 91(8), 538-43 (2015)

    Google Scholar 

  4. Canchi, T., Saxena, A., Ng, E.Y.K., Pwee, E.C.H., Narayanan, S.: Application of fluid–structure interaction methods to estimate the mechanics of rupture in asian abdominal aortic aneurysms. BioNanoScience 8(4), 1035–1044 (2018). https://doi.org/10.1007/s12668-018-0554-z

    Article  Google Scholar 

  5. Smith-Burgess, L.: Early identification and detection of abdominal aortic aneurysms. Nurs Times. 113(3), 36–9 (17 February 2017)

    Google Scholar 

  6. Brewster, D.C., Cronenwett, J.L., Hallett, J.W., Jr., Johnston, K.W., Krupski, W.C., Matsumura, J.S.: Guidelines for the treatment of abdominal aortic aneurysms. Report of a subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery. J Vasc Surg. 37(5),1106–17 (2003). https://doi.org/10.1067/mva.2003.363

  7. Lieberg, J., Pruks, L.L., Kals, M., Paapstel, K., Aavik, A., Kals, J.: Mortality after elective and ruptured abdominal aortic aneurysm surgical repair: 12-year single-center experience of estonia. Scand J Surg. 107(2), 152–157 (2018). https://doi.org/10.1177/1457496917738923

    Article  Google Scholar 

  8. Bengtsson, H., Bergqvist, D., Sternby, N.H.: Increasing prevalence of abdominal aortic aneurysms. A necropsy study. Eur J Surg. 158(1), 19–23 (1992)

    Google Scholar 

  9. Moll, F.L., et al.: Management of abdominal aortic aneurysms clinical practice guidelines of the european society for vascular surgery. Eur J Vasc Endovasc Surg. 41, S1–S58 (2011). https://doi.org/10.1016/j.ejvs.2010.09.011

    Article  Google Scholar 

  10. Brightwell, R.E., Choong, A.M., Barnett, A.G., Walker, P.J.: Changes in temperature affect the risk of abdominal aortic aneurysm rupture. ANZ J Surg. 84(11), 871–876 (2014). https://doi.org/10.1111/ans.12446

    Article  Google Scholar 

  11. Saxena, A., Ng, E.Y.K., Manchanda, C., Canchi, T.: Cardiac thermal pulse at the neck-skin surface as a measure of stenosis in the carotid artery. Therm Sci Eng Prog. 19, 100603 (2020). https://doi.org/10.1016/j.tsep.2020.100603

    Article  Google Scholar 

  12. Scotti, C.M., Shkolnik, A.D., Muluk, S.C., Finol, E.A.: Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed Eng Online. 4, 64 (2005). https://doi.org/10.1186/1475-925x-4-64

    Article  Google Scholar 

  13. Lin, S., Han, X., Bi, Y., Ju, S., Gu, L.: Fluid-structure interaction in abdominal aortic aneurysm: effect of modeling techniques. Biomed Res Int. 2017, 7023078 (2017). https://doi.org/10.1155/2017/7023078

    Article  Google Scholar 

  14. Mesri, Y., Niazmand, H., Deyranlou, A.: Numerical study on fluid-structure interaction in a patient-specific abdominal aortic aneurysm for evaluating wall heterogeneity and material model effects on its rupture. J Appl Fluid Mech. 10, 1699–1709 (2017). https://doi.org/10.18869/acadpub.jafm.73.243.27678

    Article  Google Scholar 

  15. Ng, E.Y.K., Pang, E.Y.L.: Thermal elevation on midriff skin surface as a potential diagnostic feature for Abdominal Aortic Aneurysm using Infrared Thermography (IRT). Int J Therm Sci. 172, 107305 (2022). https://doi.org/10.1016/j.ijthermalsci.2021.107305

    Article  Google Scholar 

  16. Ng, E.Y.K., Looi, L.J.C.: Numerical analysis of biothermal-fluids and cardiac thermal pulse of abdominal aortic aneurysm. Math. Biosci. Eng. 19(10), 10213–10251 (2022). https://doi.org/10.3934/mbe.2022479

    Article  MATH  Google Scholar 

  17. Ouriel, K., Green, R.M., Donayre, C., Shortell, C.K., Elliott, J., DeWeese, J.A.: An evaluation of new methods of expressing aortic aneurysm size: relationship to rupture. J Vasc Surg. 15(1), 12–20 (1992). https://doi.org/10.1016/0741-5214(92)70008-9

    Article  Google Scholar 

  18. Di Martino, E.S., et al.: Fluid–structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys. 23(9), 647–655 (2001). https://doi.org/10.1016/S1350-4533(01)00093-5

    Article  Google Scholar 

  19. Raghavan, M.L., Vorp, D.A.: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech. 33(4), 475–482 (2000). https://doi.org/10.1016/S0021-9290(99)00201-8

    Article  Google Scholar 

  20. Cardoso, M.H.: Experimental study of the human anterolateral abdominal wall: biomechanical properties of Fascia and muscles (2012)

    Google Scholar 

  21. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow, 1st ed. CRC Press, Boca Raton (1980)

    Google Scholar 

  22. Xiang, J., Tutino, V.M., Snyder, K.V., Meng, H.: CFD: computational fluid dynamics or confounding factor dissemination? the role of hemodynamics in intracranial aneurysm rupture risk assessment. Am J Neuroradiol. 35(10), 1849–1857 (2014). https://doi.org/10.3174/ajnr.A3710

    Article  Google Scholar 

  23. Gijsen, F., van de Vosse, F., Janssen, J.D.: The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model. J Biomech. 32, 601–608 (1999). https://doi.org/10.1016/S0021-9290(99)00015-9

    Article  Google Scholar 

  24. Scotti, C.M., Finol, E.A.: Compliant biomechanics of abdominal aortic aneurysms: A fluid–structure interaction study. Comput Struct. 85(11), 1097–1113 (2007). https://doi.org/10.1016/j.compstruc.2006.08.041

    Article  Google Scholar 

  25. Perktold, K., Resch, M., Florian, H.: Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. J Biomech Eng. 113(4), 464–475 (1991). https://doi.org/10.1115/1.2895428

    Article  Google Scholar 

  26. Humphrey, J.D., Holzapfel, G.A.: Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J Biomech. 45(5), 805–814 (2012). https://doi.org/10.1016/j.jbiomech.2011.11.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Y. K. Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ng, E.Y.K., Looi, L.J.C. (2022). Infrared Technology for Vascular Abnormality in Finding of Abdominal Aortic Aneurysm. In: Kakileti, S.T., et al. Artificial Intelligence over Infrared Images for Medical Applications and Medical Image Assisted Biomarker Discovery. MIABID AIIIMA 2022 2022. Lecture Notes in Computer Science, vol 13602. Springer, Cham. https://doi.org/10.1007/978-3-031-19660-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19660-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19659-1

  • Online ISBN: 978-3-031-19660-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics