Skip to main content

Enhancing Local Context of Histology Features in Vision Transformers

  • Conference paper
  • First Online:
Artificial Intelligence over Infrared Images for Medical Applications and Medical Image Assisted Biomarker Discovery (MIABID 2022, AIIIMA 2022)

Abstract

Predicting complete response to radiotherapy in rectal cancer patients using deep learning approaches from morphological features extracted from histology biopsies provides a quick, low-cost and effective way to assist clinical decision making. We propose adjustments to the Vision Transformer (ViT) network to improve the utilisation of contextual information present in whole slide images (WSIs). Firstly, our position restoration embedding (PRE) preserves the spatial relationship between tissue patches, using their original positions on a WSI. Secondly, a clustering analysis of extracted tissue features explores morphological motifs which capture fundamental biological processes found in the tumour micro-environment. This is introduced into the ViT network in the form of a cluster label token, helping the model to differentiate between tissue types. The proposed methods are demonstrated on two large independent rectal cancer datasets of patients selectively treated with radiotherapy and capecitabine in two UK clinical trials. Experiments demonstrate that both models, PREViT and ClusterViT, show improvements in the prediction over baseline models.

Supported by Cancer Research UK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andréé, T., Shiu, K., Kim, T., et al.: Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 383(23), 2207–2218 (2020). https://doi.org/10.1056/NEJMoa2017699

    Article  Google Scholar 

  2. Anitei, M.G., et al.: Prognostic and predictive values of the immunoscore in patients with rectal cancer. Clin. Cancer Res. 20(7), 1891–1899 (2014). https://doi.org/10.1158/1078-0432.CCR-13-2830

    Article  Google Scholar 

  3. Bilal, M., Raza, S., Azam, A., et al.: Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study. Lancet Digit Health 3(12), e763–e772 (2021)

    Article  Google Scholar 

  4. Bychkov, D., Linder, N., Turkki, R., et al.: Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 8, 3395 (2018). https://doi.org/10.1038/s41598-018-21758-3

    Article  Google Scholar 

  5. Campanella, G., Hanna, M., Geneslaw, L., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019). https://doi.org/10.1038/s41591-019-0508-1

    Article  Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16 \(times\) 16 words: transformers for image recognition at scale. CoRR (2020). arxiv.org/abs/2010.11929

  7. Echle, A., Grabsch, H.I., Quirke, P., et al.: Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning. Gastroenterology 159(4), 1406–1416 (2020)

    Article  Google Scholar 

  8. Gao, Z., et al.: Instance-based vision transformer for subtyping of papillary renal cell carcinoma in histopathological image. CoRR (2021). arxiv.org/abs/2106.12265

  9. George, T.J.J., Allegra, C.J., Yothers, G.: Neoadjuvant rectal (NAR) score: a new surrogate endpoint in rectal cancer clinical trials. Curr. Colorectal Cancer Rep. 11(5), 275–280 (2015). https://doi.org/10.1007/s11888-015-0285-2

    Article  Google Scholar 

  10. Guinney, J., Dienstmann, R., Wang, X., et al.: The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015). https://doi.org/10.1038/nm.3967

    Article  Google Scholar 

  11. Hildebrand, L.A., Pierce, C.J., Dennis, M., Paracha, M., Maoz, A.: Artificial intelligence for histology-based detection of microsatellite instability and prediction of response to immunotherapy in colorectal cancer. Cancers (Basel) 13(3), 391 (2021). https://doi.org/10.3390/cancers13030391

    Article  Google Scholar 

  12. Iizuka, O., Kanavati, F., Kato, K., et al.: Deep learning models for histopathological classification of gastric and colonic epithelial tumours. Sci. Rep. 10, 1504 (2020). https://doi.org/10.1038/s41598-020-58467-9

    Article  Google Scholar 

  13. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 2127–2136. PMLR (2018). https://proceedings.mlr.press/v80/ilse18a.html

  14. Islam, M.A., Jia, S., Bruce, N.D.B.: How much position information do convolutional neural networks encode? CoRR (2020). arxiv.org/abs/2001.08248

  15. Jones, H.J.S., et al.: Stromal composition predicts recurrence of early rectal cancer after local excision. Histopathology 79, 947–956 (2021). https://doi.org/10.1111/his.14438

    Article  Google Scholar 

  16. Kanavati, F., Toyokawa, G., Momosaki, S., et al.: A deep learning model for the classification of indeterminate lung carcinoma in biopsy whole slide images. Sci. Rep. 11, 8110 (2021). https://doi.org/10.1038/s41598-021-87644-7

    Article  Google Scholar 

  17. Kim, N., et al.: Detection of microsatellite instability in colorectal cancer patients with a plasma-based real-time PCR analysis. Front. Pharmacol. 12 (2021). https://doi.org/10.3389/fphar.2021.758830,www.frontiersin.org/article/10.3389/fphar.2021.758830

  18. Koelzer, V., Lugli, A., Dawson, H., et al.: Cd8/cd45ro t-cell infiltration in endoscopic biopsies of colorectal cancer predicts nodal metastasis and survival. J. Trans. Med. 12(81) (2014). https://doi.org/10.1186/1479-5876-12-81

  19. Li, H., et al.: DT-MIL: deformable transformer for multi-instance learning on histopathological image. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 206–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_20

    Chapter  Google Scholar 

  20. Ling, C.X., Huang, J., Zhang, H.: AUC: a better measure than accuracy in comparing learning algorithms. In: Xiang, Y., Chaib-draa, B. (eds.) Advances in Artificial Intelligence, pp. 329–341. Springer, Berlin Heidelberg (2003). https://doi.org/10.1007/3-540-44886-1_25

    Chapter  Google Scholar 

  21. Lu, M.Y., Williamson, D., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021). https://doi.org/10.1038/s41551-020-00682-w

    Article  Google Scholar 

  22. New treatment could spare early-stage rectal cancer patients life-altering side effects. www.birmingham.ac.uk/news/2020/new-treatment-could-spare-early-stage-rectal-cancer-patients-life-altering-side-effects. Accessed 21 June 2022

  23. Rogers, A., Gibbons, D., Hanly, A., et al.: Prognostic significance of tumor budding in rectal cancer biopsies before neoadjuvant therapy. Mod. Pathol. 27, 156–162 (2014). https://doi.org/10.1038/modpathol.2013.124

    Article  Google Scholar 

  24. Shao, Z., et al.: Transmil: transformer based correlated multiple. instance learning for whole slide image classication. CoRR (2021). arxiv.org/abs/2106.00908

  25. Sharma, Y., Shrivastava, A., Ehsan, L., Moskaluk, C.A., Syed, S., Brown, D.E.: Cluster-to-conquer: a framework for end-to-end multi-instance learning for whole slide image classification (2021). https://doi.org/10.48550/arxiv.2103.10626

  26. Sirinukunwattana, K., et al.: Image-based consensus molecular subtype (imCMS) classification of colorectal cancer using deep learning. Gut 70(3), 544–554 (2021). https://doi.org/10.1136/gutjnl-2019-319866,https://gut.bmj.com/content/70/3/544

  27. Zhang, F., Yao, S., Li, Z., et al.: Predicting treatment response to neoadjuvant chemoradiotherapy in local advanced rectal cancer by biopsy digital pathology image features. Clin. Transl. Med. 10(2), e110 (2020). https://doi.org/10.1002/ctm2.110

    Article  Google Scholar 

Download references

Acknowledgements

Financial support: RW, AS - EPSRC Center for Doctoral Training in Health Data Science (EP/S02428X/1); RW - Oxford CRUK Cancer Centre; VHK - Promedica Foundation (F-87701-41-01) and Swiss National Science Foundation (P2SKP3\(\_\)168322/1, P2SKP3\(\_\)168322/2); TSM - The Stratification in Colorectal Cancer Consortium (S:CORT) funded by the Medical Research Council and Cancer Research UK (MR/M016587/1); JR, KS - Oxford NIHR National Oxford Biomedical Research Centre and the PathLAKE consortium (InnovateUK). The ARISTOTLE trial was funded by Cancer Research UK (CRUK/08/032). The computational aspects of this research were funded from the NIHR Oxford BRC with additional support from the Wellcome Trust Core Award Grant Number 203141/Z/16/Z. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Rittscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wood, R. et al. (2022). Enhancing Local Context of Histology Features in Vision Transformers. In: Kakileti, S.T., et al. Artificial Intelligence over Infrared Images for Medical Applications and Medical Image Assisted Biomarker Discovery. MIABID AIIIMA 2022 2022. Lecture Notes in Computer Science, vol 13602. Springer, Cham. https://doi.org/10.1007/978-3-031-19660-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19660-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19659-1

  • Online ISBN: 978-3-031-19660-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics