Skip to main content

Design and Experimental Analysis of an Adaptive Cruise Control

  • Conference paper
  • First Online:
Robotics, Computer Vision and Intelligent Systems (ROBOVIS 2020, ROBOVIS 2021)

Abstract

Nowadays, cars are equipped with quite a few Advanced Driver Assistant Systems(ADAS) to increase comfortability and safety while driving. Adaptive Cruise Control (ACC) is one of these ADAS systems that keeps a certain distance to a heading vehicle in front by smoothly adapting the vehicle’s speed. Usually, this is implemented using a separate PID controller for the velocity and distance or a MIMO system. This paper proposes a novel Fuzzy Logic approach for an autonomous model car called Autominy. The AutoMiny platform was developed at Dahlem Center for Machine Learning and Robotics at Freie Universität Berlin. It is equipped with a software stack for fully autonomous driving with custom modules for localization, control, and navigation. AutoMiny navigates using a pre-build vector force field approach. The proposed Fuzzy Logic controller can handle two states with different profiles. We extend the evaluating between our approach against a standard PID controller approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, Y., et al.: Adaptive cruise control strategies implemented on experimental vehicles: a review. IFAC-PapersOnLine 52(5), 21–27 (2019). https://doi.org/10.1016/j.ifacol.2019.09.004

    Article  Google Scholar 

  2. Shang, M., Stern, R.E.: Impacts of commercially available adaptive cruise control vehicles on highway stability and throughput. Transp. Res. Part C: Emerg. Technol. 122, 102897 (2021). https://doi.org/10.1016/j.trc.2020.102897

    Article  Google Scholar 

  3. Lu, C., Aakre, A.: A new adaptive cruise control strategy and its stabilization effect on traffic flow. Eur. Transp. Res. Rev. 10(2), 1–11 (2018). https://doi.org/10.1186/s12544-018-0321-9

    Article  Google Scholar 

  4. Ntousakis, I.A., Nikolos, I.K., Papageorgiou, M.: On microscopic modelling of adaptive cruise control systems. Transp. Res. Proc. 6, 111–27 (2015). https://doi.org/10.1016/j.trpro.2015.03.010

    Article  Google Scholar 

  5. Chang, B.-J., Tsai, Y.-L., Liang, Y.-H.: Platoon-based cooperative adaptive cruise control for achieving active safe driving through mobile vehicular cloud computing. Wirel. Person. Commun. 97(4), 5455–5481 (2017). https://doi.org/10.1007/s11277-017-4789-8

    Article  Google Scholar 

  6. Xiao, L., Gao, F.: A comprehensive review of the development of adaptive cruise control systems. Veh. Syst. Dyn. 48(10), 1167–92 (2010). https://doi.org/10.1080/00423110903365910

    Article  Google Scholar 

  7. Rajamani, R.: Vehicle Dynamics and Control, 2nd edn. Springer, Berlin (2012). https://doi.org/10.1007/978-1-4614-1433-9

    Book  MATH  Google Scholar 

  8. Tsai, C.-C., Hsieh, S.-M., Chen, C.-T.: Fuzzy longitudinal controller design and experimentation for adaptive cruise control and stop & go. J. Intell. Robot. Syst. 59(2), 167–89 (2010). https://doi.org/10.1007/s10846-010-9393-z

    Article  MATH  Google Scholar 

  9. Milanes, V., Villagra, J., Godoy, J., Gonzalez, C.: Comparing fuzzy and intelligent pi controllers in stop-and-go manoeuvres. IEEE Trans. Control Syst. Technol. 20(3), 770–778 (2012). https://doi.org/10.1109/TCST.2011.2135859

    Article  Google Scholar 

  10. Piao, J., McDonald, M.: Advanced driver assistance systems from autonomous to cooperative approach. Transp. Rev. 28(5), 659–84 (2008). https://doi.org/10.1080/01441640801987825

    Article  Google Scholar 

  11. Paul, A., Chauhan, R., Srivastava, R., Baruah, M.: Advanced Driver Assistance Systems, pp. 2016–28-0223 (2016). https://doi.org/10.4271/2016-28-0223

  12. Alomari, K., Mendoza, R., Sundermann, S., Goehring, D., Rojas, R.: Fuzzy logic-based adaptive cruise control for autonomous model car. In: Proceedings of the International Conference on Robotics, Computer Vision and Intelligent Systems, vol. 1: ROBOVIS, pp. 121–130 (2020). ISBN 978-989-758-479-4. https://doi.org/10.5220/0010175101210130

  13. Naranjo, J., González, C., Reviejo, J., García, R., de Pedro, T.: Adaptive fuzzy control for inter-vehicle gap keeping. IEEE Trans. Intell. Transp. Syst. 4(3), 11 (2003)

    Article  Google Scholar 

  14. Marsden, G., McDonald, M., Brackstone, M.: Towards an Understanding of Adaptive Cruise Control (2001), 19

    Google Scholar 

  15. Basjaruddin, N.C., Kuspriyanto, K., Saefudin, D., Khrisna Nugraha, I.: Developing adaptive cruise control based on fuzzy logic using hardware simulation. Int. J. Electric. Comput. Eng. (IJECE) 4(6), 944–951 (2014)

    Google Scholar 

  16. Karasudani, K.: Inter-Vehicle Distance Detecting Device, US Patent 5,369,590 (November 29, 1994)

    Google Scholar 

  17. Zhao, D., Wang, B.: Data-based vehicle adaptive cruise control: a review. In: Proceedings of the 32nd Chinese Control Conference, Xi’an, China, pp. 7840–7845 (2013)

    Google Scholar 

  18. SAE-J3016: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, SAE J3016–201806 (2018). https://doi.org/10.4271/J3016-201806

  19. Pananurak, W., Thanok, S., Parnichkun, M.: Adaptive cruise control for an intelligent vehicle. In: 2008 IEEE International Conference on Robotics and Biomimetics, pp. 1794–99. IEEE, Bangkok (2009). https://doi.org/10.1109/ROBIO.2009.4913274

  20. Jantezn, J.: Design of Fuzzy Controllers. Technical University of Denmark, Department of Automation, vol. 326, pp. 362–367 (1998)

    Google Scholar 

  21. Jantzen, J.: Foundations of Fuzzy Control; a Practical Approach, 2nd edn. Wiley, Greece (2013)

    Book  Google Scholar 

  22. Michels, K., Klawonn, F., Kruse, R., Nürnberger, A.: Fuzzy Control; Fundamentals, Stability and Design of Fuzzy Controllers. Springer, Berlin (2006). https://doi.org/10.1007/3-540-31766-XISBN: 978-3-540-31766-1

    Book  MATH  Google Scholar 

  23. Ahmad, H., Basiran, S.N.A.: Fuzzy logic based vehicle speed control performance considering different membership types. ARPN J. Eng. Appl. Sci. 10(21) (2015). ISSN: 1819–6608

    Google Scholar 

  24. Stanford Artificial Intelligence Laboratory et al. (2018) Robotic Operating System, ROS Melodic Morenia. https://www.ros.org

  25. Driankov, D., Saffiotti, A.: Fuzzy Logic Techniques for Autonomous Vehicle Navigation. Springer, Berlin (2001). https://doi.org/10.1007/978-3-7908-1835-2, ISBN: 978-3-7908-1835-2

  26. Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992). https://doi.org/10.1109/70.163777

    Article  Google Scholar 

  27. Li, P.Y., Horowitz, R.: Passive velocity field control of mechanical manipulators. IEEE Trans. Robot. Autom. 15(4), 751–763 (1999). https://doi.org/10.1109/70.782030

    Article  Google Scholar 

  28. Rasekhipour, Y., Khajepour, A., Chen, S., Litkouhi, B.: A potential field-based model predictive path-planning controller for autonomous road vehicles. IEEE Trans. Intell. Transp. Syst. 18(5), 1255–1267 (2017). https://doi.org/10.1109/TITS.2016.2604240

    Article  Google Scholar 

  29. Iscold, P., Pereira, G.A.S., Torres, L.A.B.: Development of a hand-launched small UAV for ground reconnaissance. IEEE Trans. Aerosp. Electron. Syst. 46(1), 335–348 (2010). https://doi.org/10.1109/TAES.2010.5417166

    Article  Google Scholar 

  30. Goncalves, V.M., Pimenta, L.C.A., Maia, C.A., Dutra, B.C.O., Pereira, G.A.S.: Vector fields for robot navigation along time-varying curves in \(n\)-dimensions. IEEE Trans. Robot. 26(4), 647–659 (2010). https://doi.org/10.1109/TRO.2010.2053077

    Article  Google Scholar 

  31. Singh, A., Satsangi, C.S., Panse, P.: Adaptive Cruise Control using Fuzzy Logic. Int. J. Digital Appl. Contemp. Res. (IJDACR) 3(8), 1–7 (2015). ISSN: 2319–4863. Accessed from 8 March 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Alomari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alomari, K., Sundermann, S., Goehring, D., Rojas, R. (2022). Design and Experimental Analysis of an Adaptive Cruise Control. In: Galambos, P., Kayacan, E., Madani, K. (eds) Robotics, Computer Vision and Intelligent Systems. ROBOVIS ROBOVIS 2020 2021. Communications in Computer and Information Science, vol 1667. Springer, Cham. https://doi.org/10.1007/978-3-031-19650-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19650-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19649-2

  • Online ISBN: 978-3-031-19650-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics