Skip to main content

Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach

  • Chapter
  • First Online:
Microbiome in 3P Medicine Strategies

Part of the book series: Advances in Predictive, Preventive and Personalised Medicine ((APPPM,volume 16))

Abstract

The modification the gut microbiota in metabolic syndrome and associated chronic diseases is among leading tasks of microbiome research and needs for clinical use of probiotics. Evidence lack for the implications for microbiome modification to improve metabolic health in particular when applied impersonalized. Probiotics have tremendous potential in personalized nutrition and medicine to develop healthy diets. The aim was to conduct comprehensive overview of recent updates of role of microbiota on human health and development of metabolic syndrome and efficacy of microbiota modulation considering specific properties of probiotic strain and particular aspects of metabolic syndrome and patient’s phenotype to fill the gap between probiotic product and individual to facilitate development of individualized/personalized probiotic and prebiotic treatments. We discuss the relevance of using host phenotype-associated biomarkers, those based on imaging and molecular and patrient’s history, reliable and accessible to facilitate person-specific appication of probiotics and prebiotic substances. Microbiome phenotypes can be parameters of predictive medicine to recognize patient’s predispositions and evaluate treatment responses; the number of phenotype markers can be effectively involved to monitor microbiome modulation. The studied strain-dependent properties of probiotic strains are potentially relevant for individualized treatment for gut and distant sites microbiome modulation. The evidence regarding probiotic strains properties can be taken to account via pathophysiology-based approach for most effective individualized treatment via gut, oral and vaginal and other sites microbiome modulation according to phenotype of the patient providing individualized and personalized medical approaches. Preventive potential of probiotics is strong and well-documented. Recommendations for individualized clinical use of probiotics, and for probiotic studies design have been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MetS:

metabolic syndrome

BMI:

body mass index

WC:

waist circumference

LAB:

lactic acid bacteria

FED:

fat-enriched diet

FRD:

fructose-rich diet

HDL:

high density lipoprotein

IL:

interleukin

LPS:

lipopolysaccharide

PEMs:

peritoneal exudate macrophages

SCFA:

short-chain fatty acid

TNF-α:

tumor necrosis factor-α

DM:

diabetes mellitus

T2DM:

type 2 diabetes mellitus

FBG:

fasting blood glucose

ACE:

angiotensin converting enzyme

ROS:

reactive oxygen species

COX:

cyclooxygenase

ADCF:

adipose-derived contracting factor

ED:

endothelial dysfunction

NO:

nitric oxide

EDN:

endothelin

WAT:

white adipose tissue

BAT:

brown adipose tissue

PVAT:

perivascular adipose tissue

CT:

computed tomography

MRI:

magnetic resonance imaging

US:

ultrasound

SIBO:

small intestinal bacterial overgrowth

NAFLD:

non-alcoholic fatty liver disease

CKD:

chronic kidney disease

References

  1. WHO. Obesity and overweight: Fact sheet N. 311. http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 19 Mar 2018

  2. WHO (2009) Cardiovascular disease, Fact sheet no. 317. WHO, Geneva. http://www.who.int/mediacentre/factsheets/fs317/en/print.html

    Google Scholar 

  3. Harsch IA, Konturek PC (2018) The role of gut microbiota in obesity and type 2 and type 1 diabetes mellitus: new insights into “old” diseases. Med Sci (Basel) 6(2):pii: E32. https://doi.org/10.3390/medsci6020032

    Article  CAS  Google Scholar 

  4. Park S, Bae JH (2015) Probiotics for weight loss: a systematic review and meta-analysis. Nutr Res 35:566–575

    Article  CAS  Google Scholar 

  5. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  Google Scholar 

  6. Parekh PJ, Balart LA, Johnson DA (2015 Jun) The influence of the gut microbiome on obesity, metabolic syndrome and gastrointestinal disease. Clin Transl Gastroenterol 18(6):e91. https://doi.org/10.1038/ctg.2015.16

    Article  Google Scholar 

  7. Aron-Wisnewsky J, Clément K (2016) The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol 12(3):169–181. https://doi.org/10.1038/nrneph.2015.191

    Article  CAS  Google Scholar 

  8. Bubnov RV, Spivak MY, Lazarenko LM, Bomba A, Boyko NV (2015) Probiotics and immunity: provisional role for personalized diets and disease prevention. EPMA J 6:14

    Article  Google Scholar 

  9. Reid G, Abrahamsson T, Bailey M, Bindels LB, Bubnov R, Ganguli K, Martoni C, O'Neill C, Savignac HM, Stanton C, Ship N, Surette M, Tuohy K, van Hemert S (2017 Jul) How do probiotics and prebiotics function at distant sites? Benef Microb 20:1–14. https://doi.org/10.3920/BM2016.0222

    Article  Google Scholar 

  10. Lazarenko LM, Babenko LP, Bubnov RV, Demchenko OM, Zotsenko VM, Boyko NV et al (2017) Imunobiotics are the novel biotech drugs with antibacterial and immunomodulatory properties. Mikrobiol Z 79(1):66–75

    Article  Google Scholar 

  11. Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Demchenko OA, Nechypurenko OV, Spivak MY (2017) Comparative study of probiotic effects of lactobacillus and Bifidobacteria strains on holesterol levels, liver morphology and the gut microbiota ino bese mice. EPMA J 8(4):357–376. https://doi.org/10.1007/s13167-017-0117-3

    Article  Google Scholar 

  12. Dao MC, Clément K (2018 Feb) Gut microbiota and obesity: concepts relevant to clinical care. Eur J Intern Med 48:18–24. https://doi.org/10.1016/j.ejim.2017.10.005

    Article  Google Scholar 

  13. Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG (2016) Role of gut microbiota in the aetiology of obesity: proposed mechanisms and review of the literature. J Obes 15(2016):7353642

    Google Scholar 

  14. Shen J, Obin MS, Zhao L (2013) The gut microbiota, obesity and insulin resistance. Mol Asp Med 34(1):39–58. Epub 2012 Nov 16

    Article  CAS  Google Scholar 

  15. Arora T, Singh S, Sharma RK (2013) Probiotics: interaction with gut microbiome and antiobesity potential. Nutrition 29(4):591–596. https://doi.org/10.1016/j.nut.2012.07.017

    Article  CAS  Google Scholar 

  16. Lumeng CN (2013) Innate immune activation in obesity. Mol Asp Med 34(1):12–29. https://doi.org/10.1016/j.mam.2012.10.002

    Article  CAS  Google Scholar 

  17. Chakraborti CK (2015) New-found link between microbiota and obesity. World J Gastrointest Pathophysiol 6(4):110–119. https://doi.org/10.4291/wjgp.v6.i4.110

    Article  Google Scholar 

  18. Luca F, Kupfer SS, Knights D, Khoruts A, Blekhman R (2018) Functional genomics of host-microbiome interactions in humans. Trends Genet 34(1):30–40. https://doi.org/10.1016/j.tig.2017.10.001

    Article  CAS  Google Scholar 

  19. WHO/FAO scientific document. http://who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Accessed 11 Feb 2018

  20. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The international scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014(8):506–514. https://doi.org/https://doi.org/10.1038/nrgastro.2014.66

  21. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies) (2016) General scientific guidance for stakeholders on health claim applications. EFSA J 14(1):4367. [38 pp.]. https://doi.org/10.2903/j.efsa.2016.4367

    Article  CAS  Google Scholar 

  22. European Food Safety Authority (EFSA) (2008) Technical guidance – update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. EFSA J 732:1–15. https://doi.org/10.2903/j.efsa.2008.732

    Article  Google Scholar 

  23. Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M et al (2016) Medicine in the early twenty-first century: paradigm and anticipation – EPMA position paper 2016. EPMA J 7:23

    Article  Google Scholar 

  24. Jobin C (2018) Precision medicine using microbiota. Science 359(6371):32–34. https://doi.org/10.1126/science.aar2946

    Article  CAS  Google Scholar 

  25. Sanders ME, Merenstein DJ, Ouwehand AC, Reid G, Salminen S, Cabana MD, Paraskevakos G, Leyer G (2016) Probiotic use in at-risk populations. J Am Pharm Assoc 56:680–686

    Article  Google Scholar 

  26. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ et al (2017 Aug) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14(8):491–502. https://doi.org/10.1038/nrgastro.2017.75

    Article  Google Scholar 

  27. Rondanelli M, Faliva MA, Perna S, Giacosa A, Peroni G, Castellazzi AM (2017) Using probiotics in clinical practice: where are we now? A review of existing meta-analyses. Gut Microbes 8(6):521–543. https://doi.org/10.1080/19490976.2017.1345414

    Article  Google Scholar 

  28. Parker EA, Roy T, D'Adamo CR, Wieland LS (2018 Jan) Probiotics and gastrointestinal conditions: an overview of evidence from the Cochrane Collaboration. Nutrition 45:125.e11–134.e11. https://doi.org/10.1016/j.nut.2017.06.024

    Article  Google Scholar 

  29. Wilkins T, Sequoia J (2017) Probiotics for gastrointestinal conditions: A summary of the evidence. Am Fam Physician 96(3):170–178

    Google Scholar 

  30. van den Nieuwboer M, Browne PD, Claassen E (2016) Patient needs and research priorities in probiotics: A quantitative KOL prioritization analysis with emphasis on infants and children. Pharm Nutr 4(1):19–28

    Google Scholar 

  31. Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Spivak MY (2018) Specific properties of probiotic strains: relevance and benefits for the host. EPMA J 9(2):205–223. https://doi.org/10.1007/s13167-018-0132-z

    Article  Google Scholar 

  32. Mokrozub VV, Lazarenko LM, Sichel LM, Bubnov RV, Spivak MY (2015) The role of beneficial bacteria wall elasticity in regulating innate immune response. EPMA J 6:13

    Article  Google Scholar 

  33. Savcheniuk OA, Virchenko OV, Falalyeyeva TM, Beregova Tetyana V, Babenko LP, Lazarenko LM, Demchenko OM, Bubnov RV, Spivak MY (2014) The efficacy of probiotics for monosodium glutamate-induced obesity: dietology concerns and opportunities for prevention. EPMA J 5:2

    Article  Google Scholar 

  34. Konopelniuk VV, Goloborodko II, Ishchuk TV, Synelnyk TB, Ostapchenko LI, Spivak MYa, Bubnov RV. (2017) Efficacy of fenugreek-based bionanocomposite on renal dysfunction and endogenous intoxication in high-calorie diet-induced obesity rat model—comparative study. EPMA J. https://doi.org/10.1007/s13167-017-0098-2

  35. Beregova TV, Neporada KS, Skrypnyk M, Falalyeyeva TM, Zholobak NM, Shcherbakov OB, Spivak MY, Bubnov RV (2017) Efficacy of nanoceria for periodontal tissues alteration in glutamate-induced obese rats-multidisciplinary considerations for personalized dentistry and prevention. EPMA J 8(1):43–49. https://doi.org/10.1007/s13167-017-0085-7

    Article  Google Scholar 

  36. Yefimenko OY, Savchenko YO, Falalyeyeva TM, Beregova TV, Zholobak NM, Spivak MY, Shcherbakov OB, Bubnov RV (2015) Nanocrystalline cerium dioxide efficacy for gastrointestinal motility: potential for prokinetic treatment and prevention in elderly. EPMA J 6:6

    Article  Google Scholar 

  37. Kobyliak NM, Falalyeyeva TM, Kuryk OG, Beregova TV, Bodnar PM, Zholobak NM, Shcherbakov OB, Bubnov RV et al (2015) Antioxidative effects of cerium dioxide nanoparticles ameliorate age-related male infertility: optimistic results in rats and the review of clinical clues for integrative concept of men health and fertility. EPMA J 6:1

    Article  Google Scholar 

  38. Polak-Berecka M, Waśko A, Paduch R, Skrzypek T, Sroka-Bartnicka A (2014) The effect of cell surface components on adhesion ability of lactobacillus rhamnosus. Antonie Van Leeuwenhoek 106(4):751–762. https://doi.org/10.1007/s10482-014-0245-x

    Article  CAS  Google Scholar 

  39. Reid G (2018) Microbes in food to treat and prevent disease. Expert Rev Precis Med Drug Dev. https://doi.org/10.1080/23808993.2018.1429217

  40. Kovatcheva-Datchary P, Arora T (2013 Feb) Nutrition, the gut microbiome and the metabolic syndrome. Best Pract Res Clin Gastroenterol 27(1):59–72. https://doi.org/10.1016/j.bpg.2013.03.017

    Article  CAS  Google Scholar 

  41. Veum VL, Laupsa-Borge J, Eng Ø, Rostrup E, Larsen TH, Nordrehaug JE, Nygård OK, Sagen JV, Gudbrandsen OA, Dankel SN, Mellgren G (2017 Jan) Visceral adiposity and metabolic syndrome after very high-fat and low-fat isocaloric diets: a randomized controlled trial. Am J Clin Nutr 105(1):85–99. https://doi.org/10.3945/ajcn.115.123463

    Article  CAS  Google Scholar 

  42. Heinsen FA, Fangmann D, Müller N, Schulte DM, Rühlemann MC, Türk K, Settgast U, Lieb W, Baines JF, Schreiber S, Franke A, Laudes M (2016) Beneficial effects of a dietary weight loss intervention on human gut microbiome diversity and metabolism are not sustained during weight maintenance. Obes Facts 9(6):379–391. https://doi.org/10.1159/000449506

    Article  CAS  Google Scholar 

  43. Zhang C, Li S, Yang L, Huang P, Li W, Wang S, Zhao G, Zhang M, Pang X, Yan Z, Liu Y, Zhao L (2013) Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 4:2163. https://doi.org/10.1038/ncomms3163

    Article  CAS  Google Scholar 

  44. Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, Liu W, Tesz GJ, Birnbaum MJ, Rabinowitz JD (2018) The small intestine converts dietary fructose into glucose and organic acids. Cell Metab 27(2):351–361.e3. https://doi.org/10.1016/j.cmet.2017.12.016

    Article  CAS  Google Scholar 

  45. Wei X, Song M, Yin X, Schuschke DA, Koo I, McClain CJ et al (2015) Effects of dietary different doses of copper and high fructose feeding on rat fecal metabolome. J Proteome Res 14:4050–4058. https://doi.org/10.1021/acs.jproteome.5b00596

    Article  CAS  Google Scholar 

  46. Lambertz J, Weiskirchen S, Landert S, Weiskirchen R (2017 Sep) Fructose: A dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front Immunol 19(8):1159. https://doi.org/10.3389/fimmu.2017.01159

    Article  CAS  Google Scholar 

  47. Zubiría MG, Gambaro SE, Rey MA, Carasi P, Serradell MLÁ, Giovambattista A (2017) Deleterious metabolic effects of high fructose intake: the preventive effect of lactobacillus kefiri administration. Nutrients 9(5) pii: E470. https://doi.org/10.3390/nu9050470

  48. Crescenzo R, Mazzoli A, Di Luccia B, Bianco F, Cancelliere R, Cigliano L et al (2017) Dietary fructose causes defective insulin signalling and ceramide accumulation in the liver that can be reversed by gut microbiota modulation. Food Nutr Res 61(1):1331657. https://doi.org/10.1080/16546628.2017.1331657

    Article  CAS  Google Scholar 

  49. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C et al (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359:1151–1156. https://doi.org/10.1126/science.aao5774

    Article  CAS  Google Scholar 

  50. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3(4):289–306. Epub 2012 May 10. Review

    Article  Google Scholar 

  51. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7:189–200

    Article  Google Scholar 

  52. Diniz YS, Faine LA, Galhardi CM, Rodrigues HG, Ebaid GX, Burneiko RC, Cicogna AC, Novelli EL (2005) Monosodium glutamate in standard and high-fiber diets: metabolic syndrome and oxidative stress in rats. Nutrition 21(6):749–755

    Article  CAS  Google Scholar 

  53. Bonder MJ, Tigchelaar EF, Cai X, Trynka G, Cenit MC, Hrdlickova B, Zhong H, Vatanen T, Gevers D, Wijmenga C, Wang Y, Zhernakova A (2016) The influence of a short-term gluten-free diet on the human gut microbiome. Genome Med 8(1):45. https://doi.org/10.1186/s13073-016-0295-y

    Article  CAS  Google Scholar 

  54. Cederroth CR, Zimmermann C, Nef S (2012) Soy, phytoestrogens and their impact on reproductive health. Mol Cell Endocrinol 355(2):192–200. https://doi.org/10.1016/j.mce.2011.05.049

    Article  CAS  Google Scholar 

  55. Kreznar JH, Keller MP, Traeger LL, Rabaglia ME, Schueler KL, Stapleton DS, Zhao W, Vivas EI, Yandell BS, Broman AT et al (2017) Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes. Cell Rep 18(7):1739–1750

    Article  CAS  Google Scholar 

  56. Ma D, Wang AC, Parikh I, Green SJ, Hoffman JD, Chlipala G, Murphy MP, Sokola BS, Bauer B, Hartz AMS, Lin AL (2018) Ketogenic diet enhances neurovascular function with altered gut microbiome in younghealthy mice. Sci Rep 8(1):6670. https://doi.org/10.1038/s41598-018-25190-5

    Article  CAS  Google Scholar 

  57. Mischke M, Plösch T (2016) The gut microbiota and their metabolites: potential implications for the host Epigenome. Adv Exp Med Biol 902:33–44. https://doi.org/10.1007/978-3-319-31248-4_3

    Article  Google Scholar 

  58. Sprockett D, Fukami T, Relman DA (2018) Role of priority effects in the early-life assembly of the gut microbiota. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/nrgastro.2017.173

  59. Steegenga WT, Mischke M, Lute C, Boekschoten MV, Lendvai A, Pruis MG, Verkade HJ, van de Heijning BJ, Boekhorst J, Timmerman HM, Plösch T, Müller M, Hooiveld GJ (2017) Maternal exposure to a Western-style diet causes differences in intestinal microbiota composition and gene expression of suckling mouse pups. Mol Nutr Food Res 61(1). https://doi.org/10.1002/mnfr.201600141. Epub 2016 Jul 12

  60. Mischke M, Arora T, Tims S, Engels E, Sommer N, van Limpt K, Baars A, Oozeer R, Oosting A, Bäckhed F, Knol J (2018) Specific synbiotics in early life protect against diet-induced obesity in adult mice. Diabetes Obes Metab. https://doi.org/10.1111/dom.13240

  61. Zholobak NM, Sherbakov AB, Babenko LS, Bogorad-Kobelska OS, Bubnov RV, Ivanov VK, Spivak MY (2014) The perspectives of biomedical application of the nanoceria. EPMA J 5(Suppl 1):A136. https://doi.org/10.1186/1878-5085-5-S1-A136

    Article  Google Scholar 

  62. Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Timoshok NO, Ulberg ZR: Gold nanoparticles – the theranostic challenge for PPPM: nanocardiology application. EPMA J 2013, 4 (1): 18–10.1186/1878-5085-4-18

    Google Scholar 

  63. Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR (2013) Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: a theranostic potential for PPP cardiology. EPMA J 4(1):20. https://doi.org/10.1186/1878-5085-4-20

    Article  Google Scholar 

  64. Rodrigues RR, Greer RL, Dong X, DSouza KN, Gurung M, Wu JY, Morgun A, Shulzhenko N (2017 Nov) Antibiotic-induced alterations in gut microbiota are associated with changes in glucose metabolism in healthy mice. Front Microbiol 22(8):2306. https://doi.org/10.3389/fmicb.2017.02306

    Article  Google Scholar 

  65. Penders J, Stobberingh EE, Savelkoul PHM, Wolffs PFG (2013) The human microbiome as a reservoir of antimicrobial resistance. Front Microbiol 4:87. https://doi.org/10.3389/fmicb.2013.00087

    Article  Google Scholar 

  66. D’Aimmo MR, Modesto M, Biavati B (2007) Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products. Int J Food Microbiol 115(1):35–42

    Article  CAS  Google Scholar 

  67. Nogacka AM, Salazar N, Arboleya S, Suárez M, Fernández N, Solís G, de Los Reyes-Gavilán CG, Gueimonde M (2018 Jan) Early microbiota, antibiotics and health. Cell Mol Life Sci 75(1):83–91. https://doi.org/10.1007/s00018-017-2670-2

    Article  CAS  Google Scholar 

  68. Koppel N, Maini Rekdal V, Balskus EP (2017) Chemical transformation of xenobiotics by the human gut microbiota. Science 356(6344)

    Google Scholar 

  69. Flint HJ (2016) Gut microbial metabolites in health and disease. Gut Microbes 7(3):187–188. https://doi.org/10.1080/19490976.2016.1182295

    Article  Google Scholar 

  70. Lebeer S, Bron PA, Marco ML, VanPijkeren JP, O’Connell Motherway M, Hill C, Pot B, Roos S, Klaenhammer T (2017 Nov) Identification of probiotic effector molecules: present state and future perspectives. Curr Opin Biotechnol 15(49):217–223. https://doi.org/10.1016/j.copbio.2017.10.007

    Article  CAS  Google Scholar 

  71. Plaza-Díaz J, Robles-Sánchez C, Abadía-Molina F, Sáez-Lara MJ, Vilchez-Padial LM, Gil Á, Gómez-Llorente C, Fontana L (2017) Gene expression profiling in the intestinal mucosa of obese rats administered probiotic bacteria. Sci Data 4:170186. https://doi.org/10.1038/sdata.2017.186

    Article  CAS  Google Scholar 

  72. van Baarlen P, Troost F, van der Meer C, Hooiveld G, Boekschoten M, Brummer RJ, Kleerebezem M (2011) Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc Natl Acad Sci U S A 108(Suppl 1):4562–4569. https://doi.org/10.1073/pnas.1000079107

    Article  Google Scholar 

  73. Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M (2016) Gut microbiota and extreme longevity. Curr Biol 26:1480–1485

    Article  CAS  Google Scholar 

  74. Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299:1259–1260

    Article  CAS  Google Scholar 

  75. Halling ML, Kjeldsen J, Knudsen T, Nielsen J, Hansen LK (2017) Patients with inflammatory bowel disease have increased risk of autoimmune and inflammatory diseases. World J Gastroenterol 23(33):6137–6146. https://doi.org/10.3748/wjg.v23.i33.6137

    Article  Google Scholar 

  76. Vieira SM, Pagovich OE, Kriegel MA (2014) Diet, microbiota and autoimmune diseases. Lupus 23:518–526

    Article  CAS  Google Scholar 

  77. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867

    Article  CAS  Google Scholar 

  78. Tymoshok NO, Lazarenko LM, Bubnov RV, Shynkarenko LN, Babenko LP, Mokrozub VV et al (2014) New aspects the regulation of immune response through balance Th1/Th2 cytokines. EPMA J 5(Suppl 1):A134

    Article  Google Scholar 

  79. Mohamadzadeh M, Pfeiler EA, Brown JB, Zadeh M, Gramarossa M, Managlia E, Bere P, Sarraj B, Khan MW, Pakanati KC, Ansari MJ, O'Flaherty S, Barrett T, Klaenhammer TR (2011) Regulation of induced colonic inflammation by lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A 108(Suppl 1):4623–4630. https://doi.org/10.1073/pnas.1005066107

    Article  Google Scholar 

  80. Sheil B, MacSharry J, O'Callaghan L, O'Riordan A, Waters A, Morgan J, Collins JK, O'Mahony L, Shanahan F (2006) Role of interleukin (IL-10) in probiotic-mediated immune modulation: an assessment in wild-type and IL-10 knock-out mice. Clin Exp Immunol 144(2):273–280

    Article  CAS  Google Scholar 

  81. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, Abbas AR, Modrusan Z, Ghilardi N, de Sauvage FJ, Ouyang W (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14(3):282–289. https://doi.org/10.1038/nm1720

    Article  CAS  Google Scholar 

  82. Fåk F, Bäckhed F (2012) Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe−/− mice. PLoS One 7(10):e46837. https://doi.org/10.1371/journal.pone.0046837

    Article  CAS  Google Scholar 

  83. Cani PD, Delzenne NM (2009 Dec) Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol 9(6):737–743

    Article  CAS  Google Scholar 

  84. Hessle C, Andersson B, Wold AE (2000) Gram-positive bacteria are potent inducers of monocytic interleukin-12 (IL-12) while gram-negative bacteria preferentially stimulate IL-10 production. Infect Immun 68(6):3581–3586

    Article  CAS  Google Scholar 

  85. Cebioglu M, Schild HH, Golubnitschaja O (2010) Cancer predisposition in diabetics: risk factors considered for predictive diagnostics and targeted preventive measures. EPMA J 1(1):130–137. https://doi.org/10.1007/s13167-010-0015-4

    Article  Google Scholar 

  86. Lazarenko LM, Nikitina OE, Nikitin EV, Demchenko OM, Kovtonyuk GV, Ganova LO, Bubnov RV, Shevchuk VO, Nastradina NM, Bila VV, Spivak MY (2014) Development of biomarker panel to predict, prevent and create treatments tailored to the persons with human papillomavirus-induced cervical precancerous lesions. EPMA J 5(1):1. https://doi.org/10.1186/1878-5085-5-1

    Article  Google Scholar 

  87. Damms-Machado A, Louis S, Schnitzer A, Volynets V, Rings A, Basrai M, Bischoff SC (2017) Gut permeability is related to body weight, fatty liver disease, and insulin resistance in obese individuals undergoing weight reduction. Am J Clin Nutr 105(1):127–135. https://doi.org/10.3945/ajcn.116.131110

    Article  CAS  Google Scholar 

  88. Xiao S, Fei N, Pang X, Shen J, Wang L, Zhang B, Zhang M, Zhang X, Zhang C, Li M et al (2014) A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol 87:357–367

    Article  CAS  Google Scholar 

  89. Furukawa S, Fujita T, Shimabukuro M et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114(12):1752–1761. https://doi.org/10.1172/JCI200421625

    Article  CAS  Google Scholar 

  90. Huang C-J, McAllister MJ, Slusher AL, Webb HE, Mock JT, Acevedo EO (2015) Obesity-related oxidative stress: the impact of physical activity and diet manipulation. Sports Med Open 1:32. https://doi.org/10.1186/s40798-015-0031-y

    Article  Google Scholar 

  91. Wang Y, Kirpich I, Liu Y, Ma Z, Barve S, McClain CJ, Feng W (2011) Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor, promotes intestinal integrity and ameliorates alcohol-induced liver injury. Am J Pathol 179(6):2866–2875. https://doi.org/10.1016/j.ajpath.2011.08.039

    Article  CAS  Google Scholar 

  92. Abdallah Ismail N, Ragab SH, Abd Elbaky A, Shoeib AR, Alhosary Y, Fekry D (2011) Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Arch Med Sci 7(3):501–507

    Article  Google Scholar 

  93. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180. https://doi.org/10.1038/nature09944. Epub 2011 Apr 20. Erratum in: Nature. 2011 Jun 30;474(7353):666. Nature. 2014 Feb 27;506(7489):516

    Article  CAS  Google Scholar 

  94. Roager HM, Licht TR, Poulsen SK, Larsen TM, Bahl MI (2014 Feb) Microbial Enterotypes, inferred by the Prevotella-to-Bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new Nordic diet. Appl Environ Microbiol 80(3):1142–1149. https://doi.org/10.1128/AEM.03549-13

    Article  Google Scholar 

  95. David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. https://doi.org/10.1038/nature12820

    Article  CAS  Google Scholar 

  96. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa

    Google Scholar 

  97. Cockburn DW, Koropatkin NM (2016) Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J Mol Biol. https://doi.org/10.1016/j.jmb.2016.06.02

  98. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. https://doi.org/10.1038/nature11053

    Article  CAS  Google Scholar 

  99. De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696. https://doi.org/10.1073/pnas.1005963107

    Article  Google Scholar 

  100. Jazayeri O, Daghighi SM, Rezaee F (2017) Lifestyle alters GUT-bacteria function: linking immune response and host. Best Pract Res Clin Gastroenterol. https://doi.org/10.1016/j.bpg.2017.09.009

  101. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102(31):11070–11075

    Article  CAS  Google Scholar 

  102. Louis S, Tappu RM, Damms-Machado A, Huson DH, Bischoff SC (2016) Characterization of the gut microbial Community of Obese Patients Following a weight-loss intervention using whole metagenome shotgun sequencing. PLoS One 11(2):e0149564. https://doi.org/10.1371/journal.pone.0149564

    Article  CAS  Google Scholar 

  103. Grazul H, Kanda LL, Gondek D (2016) Impact of probiotic supplements on microbiome diversity following antibiotic treatment of mice. Gut Microbes 7(2):101–114. https://doi.org/10.1080/19490976.2016.1138197

    Article  Google Scholar 

  104. del Campo R, Garriga M, Pérez-Aragón A, Guallarte P, Lamas A, Máiz L, Bayón C, Roy G, Cantón R, Zamora J, Baquero F, Suárez L (2014 Dec) Improvement of digestive health and reduction in proteobacterial populations in the gut microbiota of cystic fibrosis patients using a lactobacillus reuteri probiotic preparation: a double blind prospective study. J Cyst Fibros 13(6):716–722. https://doi.org/10.1016/j.jcf.2014.02.007

    Article  Google Scholar 

  105. Morgan XC, Segata N, Huttenhower C (2013) Biodiversity and functional genomics in the human microbiome. Trends Genet 29(1):51–58. Epub 2012 Nov 7

    Article  CAS  Google Scholar 

  106. Kong LC, Holmes BA, Cotillard A, Habi-Rachedi F, Brazeilles R, Gougis S et al (2014) Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects. PLoS One 9:e109434. https://doi.org/10.1371/journal.pone.0109434

    Article  CAS  Google Scholar 

  107. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E et al (2013) Dietary intervention impact on gut microbial gene richness. Nature 500:585–588. https://doi.org/10.1038/nature12480

    Article  CAS  Google Scholar 

  108. Beaumont M, Goodrich JK, Jackson MA, Yet I, Davenport ER, Vieira-Silva S et al (2016) Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biol 17:189. https://doi.org/10.1186/s13059-016-1052-7

    Article  CAS  Google Scholar 

  109. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546. https://doi.org/10.1038/nature12506

    Article  CAS  Google Scholar 

  110. Mikelsaar M, Sepp E, Štšepetova J, Songisepp E, Mändar R (2016) Biodiversity of intestinal lactic acid bacteria in the healthy population. Adv Exp Med Biol 932:1–64. Review

    Article  Google Scholar 

  111. Tucker CM, Fukami T (2014) Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc Biol Sci 281(1778):20132637. https://doi.org/10.1098/rspb.2013.2637

    Article  Google Scholar 

  112. Jiang TT, Shao TY, Ang WXG, Kinder JM, Turner LH, Pham G, Whitt J, Alenghat T, Way SS (2017) Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host Microb 22(6):809–816.e4. https://doi.org/10.1016/j.chom.2017.10.013

    Article  CAS  Google Scholar 

  113. Ilavenil S, Park HS, Vijayakumar M, Arasu MV, Kim DH, Ravikumar S, Choi KC (2015) Probiotic potential of lactobacillus strains with antifungal activity isolated from animal manure. ScientificWorldJournal 2015:802570. https://doi.org/10.1155/2015/802570

    Article  Google Scholar 

  114. Iliev ID, Leonardi I (2017) Fungal dysbiosis: immunity and interactions at mucosal barriers. Nat Rev Immunol 17(10):635–646. https://doi.org/10.1038/nri.2017.55

    Article  CAS  Google Scholar 

  115. Ward TL, Knights D, Gale CA (2017) Infant fungal communities: current knowledge and research opportunities. BMC Med 15:30

    Article  Google Scholar 

  116. Rizzetto L, De Filippo C, Cavalieri D (2014) Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. Eur J Immunol 44(11):3166–3181. Epub 2014 Oct 30

    Article  CAS  Google Scholar 

  117. Babenko LP, Lazarenko LM, Shynkarenko LM, Mokrozub VV, Pidgorskyi VS, Spivak MY (2012) The effect of lacto- and bifidobacteria compositions on the vaginal microflora in cases of intravaginal staphylococcosis. Mikrobiol Z 74(6):80–89

    CAS  Google Scholar 

  118. Hummelen R, Macklaim JM, Bisanz JE, Hammond J-A, McMillan A et al (2011) Vaginal microbiome and epithelial gene Array in post-menopausal women with moderate to severe dryness. PLoS One 6(11):e26602. https://doi.org/10.1371/journal.pone.0026602

    Article  CAS  Google Scholar 

  119. Bisanz JE, Seney S, McMillan A, Vongsa R, Koenig D et al (2014) A systems biology approach investigating the effect of probiotics on the vaginal microbiome and host responses in a double blind, placebo-controlled clinical trial of post-menopausal women. PLoS One 9(8):e104511. https://doi.org/10.1371/journal.pone.0104511

    Article  CAS  Google Scholar 

  120. Subramaniam A, Kumar R, Cliver SP et al (2016) Vaginal microbiota in pregnancy: evaluation based on vaginal Flora, birth outcome, and race. Am J Perinatol 33(4):401–408. https://doi.org/10.1055/s-0035-1565919

    Article  Google Scholar 

  121. Mändar R, Punab M, Borovkova N, Lapp E, Kiiker R, Korrovits P et al (2015) Complementary seminovaginal microbiome in couples. Res Microbiol 166(5):440–447

    Article  Google Scholar 

  122. Reece AS (2017) Dying for love: Perimenopausal degeneration of vaginal microbiome drives the chronic inflammation-malignant transformation of benign prostatic hyperplasia to prostatic adenocarcinoma. Med Hypotheses 101:44–47. https://doi.org/10.1016/j.mehy.2017.02.006

    Article  Google Scholar 

  123. Plummer EL, Vodstrcil LA, Danielewski JA, Murray GL, Fairley CK, Garland SM, Hocking JS, Tabrizi SN, Bradshaw CS (2018) Combined oral and topical antimicrobial therapy for male partners of women with bacterial vaginosis: acceptability, tolerability and impact on the genital microbiota of couples – a pilot study. PLoS One 13(1):e0190199. https://doi.org/10.1371/journal.pone.0190199

    Article  CAS  Google Scholar 

  124. Reid G (2018 Jan) Is bacterial vaginosis a disease? Appl Microbiol Biotechnol 102(2):553–558. https://doi.org/10.1007/s00253-017-8659-9

    Article  CAS  Google Scholar 

  125. Verma D, Garg PK, Dubey AK (2018) Insights into the human oral microbiome. Arch Microbiol. https://doi.org/10.1007/s00203-018-1505-3

  126. Nowicki EM, Shroff R, Singleton JA, Renaud DE, Wallace D, Drury J, Zirnheld J, Colleti B, Ellington AD, Lamont RJ, Scott DA, Whiteley M (2018) Microbiota and metatranscriptome changes accompanying the onset of gingivitis. mBio 9:e00575–18. https://doi.org/10.1128/mBio.00575-18

    Article  Google Scholar 

  127. Goodson JM, Groppo D, Halem S, Carpino E (2009) Is obesity an oral bacterial disease? J Dent Res 88(6):519–523. https://doi.org/10.1177/0022034509338353

    Article  CAS  Google Scholar 

  128. Tobita K, Watanabe I, Tomokiyo M, Saito M (2018) Effects of heat-treated lactobacillus crispatus KT-11 strain consumption on improvement of oral cavity environment: a randomised double-blind clinical trial. Benef Microb 10:1–8. https://doi.org/10.3920/BM2017.0137

    Article  Google Scholar 

  129. Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9(4):244–253. https://doi.org/10.1038/nrmicro2537

    Article  CAS  Google Scholar 

  130. Sanford JA, Gallo RL (2013) Functions of the skin microbiota in health and disease. Semin Immunol 25(5):370–377. https://doi.org/10.1016/j.smim.2013.09.005

    Article  CAS  Google Scholar 

  131. Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, Bonifaz LC, Boudin H, Neunlist M, Bueno SM, Kalergis AM, Riedel CA (2018) Intestinal microbiota influences non-intestinal related autoimmune diseases. Front Microbiol 9:432

    Article  Google Scholar 

  132. Rizzetto L, De Filippo C, Cavalieri D (2014) Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. Eur J Immunol 44(11):3166–3181

    Article  CAS  Google Scholar 

  133. Moiseyenko YV, Sukhorukov VI, Pyshnov GY, Mankovska IM, Rozova KV, Miroshnychenko OA, Kovalevska OE, Madjar SA, Bubnov RV, Gorbach AO, Danylenko KM, Moiseyenko OI (2016) Antarctica challenges the new horizons in predictive, preventive, personalized medicine: preliminary results and attractive hypotheses for multi-disciplinary prospective studies in the Ukrainian "Akademik Vernadsky" station. EPMA J 31(7):11. https://doi.org/10.1186/s13167-016-0060-8

    Article  Google Scholar 

  134. Tan L, Zhao S, Zhu W, Wu L, Li J, Shen M, Lei L, Chen X, Peng C (2018 Feb) The Akkermansia muciniphila is a gut microbiota signature in psoriasis. Exp Dermatol 27(2):144–149. https://doi.org/10.1111/exd.13463

    Article  CAS  Google Scholar 

  135. Stolzenburg-Veeser L, Golubnitschaja O (2017) Mini-encyclopaedia of the wound healing – opportunities for integrating multi-omic approaches into medical practice. J Proteome S1874-3919(17):30261-0. https://doi.org/10.1016/j.jprot.2017.07.017

    Article  CAS  Google Scholar 

  136. Lukic J, Chen V, Strahinic I, Begovic J, Lev-Tov H, Davis SC, Tomic-Canic M, Pastar I (2017) Probiotics or pro-healers: the role of beneficial bacteria in tissue repair. Wound Repair Regen 25(6):912–922. https://doi.org/10.1111/wrr.12607

    Article  Google Scholar 

  137. Mohammedsaeed W, Cruickshank S, McBain AJ, O’Neill CA (2015) Lactobacillus rhamnosus GG lysate increases re-epithelialization of keratinocyte scratch assays by promoting migration. Sci Rep 5:16147

    Article  CAS  Google Scholar 

  138. Poutahidis T, Kearney SM, Levkovich T, Qi P, Varian BJ, Lakritz JR et al (2013) Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One 8(10):e78898. https://doi.org/10.1371/journal.pone.0078898

    Article  CAS  Google Scholar 

  139. Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(Suppl. S1):4586–4591

    Google Scholar 

  140. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184

    Article  CAS  Google Scholar 

  141. Poutahidis T, Kleinewietfeld M, Smillie C, Levkovich T, Perrotta A, Bhela S, Varian BJ, Ibrahim YM, Lakritz JR, Kearney SM, Chatzigiagkos A, Hafler DA, Alm EJ, Erdman SE (2013) Microbial reprogramming inhibits Western diet-associated obesity. PLoS One 8:e68596

    Article  CAS  Google Scholar 

  142. Ferolla SM, Couto CA, Costa-Silva L, Armiliato GN, Pereira CA, Martins FS, Ferrari Mde L, Vilela EG, Torres HO, Cunha AS, Ferrari TC (2016) Beneficial effect of synbiotic supplementation on hepatic steatosis and anthropometric parameters, but not on gut permeability in a population with nonalcoholic steatohepatitis. Nutrients 8(7):pii: E397. https://doi.org/10.3390/nu8070397

    Article  CAS  Google Scholar 

  143. Behrouz V, Jazayeri S, Aryaeian N, Zahedi MJ, Hosseini F (2017) Effects of probiotic and prebiotic supplementation on leptin, adiponectin, and Glycemic parameters in non-alcoholic fatty liver disease: a randomized clinical trial. Middle East J Dig Dis 9(3):150–157. https://doi.org/10.15171/mejdd.2017.66

    Article  Google Scholar 

  144. WHO, Global brief on hypertension. 2013. http://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/. Accessed 20 Aug 2018

    Google Scholar 

  145. Xu J, Ahrén IL, Olsson C, Jeppsson B, Ahrné S, Molin G (2015) Oral and faecal microbiota in volunteers with hypertension in a double blind, randomised placebo controlled trial with probiotics and fermented bilberries. J Funct Foods 18:275–288

    Article  Google Scholar 

  146. Tuomilehto J, Lindström J, Hyyrynen J, Korpela R, Karhunen ML, Mikkola L, Jauhiainen T, Seppo L, Nissinen A (2004) Effect of ingesting sour milk fermented by lactobacillus helveticus bacteria on blood pressure in subjects with mild hypertension. J Human Hyper 18:795–802

    Article  CAS  Google Scholar 

  147. Esposito E, Iacono A, Bianco G, Autore G, Cuzzocrea S, Vajro P, Canani RB, Calignano A, Raso GM, Meli R (2009) Probiotics reduce the inflammatory response induced by a high-fat diet in the liver of young rats. J Nutr 139(5):905–911. https://doi.org/10.3945/jn.108.101808

    Article  CAS  Google Scholar 

  148. Zhang Q, Wu Y, Fei X (2016) Effect of probiotics on glucose metabolism in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Medicina (Kaunas) 52(1):28–34. https://doi.org/10.1016/j.medici.2015.11.008

    Article  CAS  Google Scholar 

  149. Gu Y, Wang X, Li J, Zhang Y, Zhong H, Liu R et al (2017) Analyses of 1149 gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun 8(1):1785. https://doi.org/10.1038/s41467-017-01682-2

    Article  CAS  Google Scholar 

  150. Bubnov RV, Ostapenko TV Ultrasound diagnosis for diabetic neuropathy – comparative study. EPMA J 7(Suppl 1):A12

    Google Scholar 

  151. Lazarenko L, Melnikova O, Babenko L, Bubnov R, Beregova T, Falalyeyeva T, Spivak M (2018) Lactobacillus and Bifidobacteria probiotic strains improve Glycemic and inflammation profiles in obesity model in mice. Preprints:2018080169. https://doi.org/10.20944/preprints201808.0169.v1

  152. Tilg H, Cani PD, Mayer EA (2016) Gut microbiome and liver diseases. Gut 65:2035–2044

    Article  CAS  Google Scholar 

  153. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L, Zhou J, Ni S, Liu L, Pons N, Batto JM, Kennedy SP, Leonard P, Yuan C, Ding W, Chen Y, Hu X, Zheng B, Qian G, Xu W, Ehrlich SD, Zheng S, Li L (2014) Alterations of the human gut microbiome in liver cirrhosis. Nature 513(7516):59–64. https://doi.org/10.1038/nature13568

    Article  CAS  Google Scholar 

  154. Codella R, Luzi L, Terruzzi I (2018 Apr) Exercise has the guts: how physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis 50(4):331–341. https://doi.org/10.1016/j.dld.2017.11.016

    Article  Google Scholar 

  155. Rincón D, Vaquero J, Hernando A, Galindo E, Ripoll C, Puerto M, Salcedo M, Francés R, Matilla A, Catalina MV et al (2014) Oral probiotic VSL#3 attenuates the circulatory disturbances of patients with cirrhosis and ascites. Liver Int 34(10):1504–1512. Epub 2014 Apr 4

    Article  Google Scholar 

  156. Marlicz W, Wunsch E, Mydlowska M, Milkiewicz M, Serwin K, Mularczyk M, Milkiewicz P, Raszeja-Wyszomirska J (2016 Dec) The effect of short term treatment with probiotic VSL#3 on various clinical and biochemical parameters in patients with liver cirrhosis. J Physiol Pharmacol 67(6):867–877

    CAS  Google Scholar 

  157. Kondo S, Kamei A, Xiao JZ, Iwatsuki K, Abe K (2013) Bifidobacterium breve B-3 exerts metabolic syndrome-suppressing effects in the liver of diet-induced obese mice: a DNA microarray analysis. Benef Microb 3:247–251. https://doi.org/10.3920/BM2012.0019

    Article  CAS  Google Scholar 

  158. Tian F, Chi F, Wang G, Liu X, Zhang Q, Chen Y et al (2015) Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in amouse model of chronic alcohol feeding. J Microbiol 53(12):856–863. https://doi.org/10.1007/s12275-015-5239-5

    Article  CAS  Google Scholar 

  159. Nido SA, Shituleni SA, Mengistu BM, Liu Y, Khan AZ, Gan F et al (2016) Effects of selenium-enriched probiotics on lipid metabolism, Antioxidative status, histopathological lesions, and related gene expression in mice fed a high-fat diet. Biol Trace Elem Res 171(2):399–409. https://doi.org/10.1007/s12011-015-0552-8

    Article  CAS  Google Scholar 

  160. Wang LX, Liu K, Gao DW, Hao JK (2013) Protective effects of two lactobacillus plantarum strains in hyperlipidemic mice. World J Gastroenterol 19(20):3150–3156. https://doi.org/10.3748/wjg.v19.i20.3150

    Article  CAS  Google Scholar 

  161. Tarantino G, Finelli C (2015) Systematic review on intervention with prebiotics/probiotics in patients with obesity-related nonalcoholic fatty liver disease. Future Microbiol 10(5):889–902. https://doi.org/10.2217/fmb.15.13

    Article  CAS  Google Scholar 

  162. Bubnov RV, Drahulian MV, Buchek PV, Gulko TP (2017) High regenerative capacity of the liver and irreversible injury of male reproductive systemin carbon tetrachloride-induced liver fibrosis rat model. EPMA J 9(1):59–75. https://doi.org/10.1007/s13167-017-0115-5

    Article  Google Scholar 

  163. Kobyliak N, Virchenko O, Falalyeyeva T, Kondro M, Beregova T, Bodnar P, Shcherbakov O, Bubnov R, Caprnda M, Delev D, Sabo J, Kruzliak P, Rodrigo L, Opatrilova R, Spivak M (2017) Cerium dioxide nanoparticles possess anti-inflammatory properties in the conditions of the obesity-associated NAFLD in rats. Biomed Pharmacother 90:608–614. https://doi.org/10.1016/j.biopha.2017.03.099

    Article  CAS  Google Scholar 

  164. Jegatheesan P, Beutheu S, Freese K, Waligora-Dupriet AJ, Nubret E, Butel MJ et al (2016) Preventive effects of citrulline on Western diet-induced non-alcoholic fatty liver disease in rats. Br J Nutr 116:191–203. https://doi.org/10.1017/S0007114516001793

    Article  CAS  Google Scholar 

  165. Thomas H (2017) NAFLD: A gut microbiome signature for advanced fibrosis diagnosis in NAFLD. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/nrgastro.2017.67

  166. Nie YF, Hu J, Yan XH (2015) Cross-talk between bile acids and intestinal microbiota in host metabolism and health. J Zhejiang Univ Sci B 16(6):436–446. https://doi.org/10.1631/jzus.B1400327

    Article  CAS  Google Scholar 

  167. Park MY, Kim SJ, Ko EK, Ahn SH, Seo H, Sung MK (2016) Gut microbiota-associated bile acid deconjugation accelerates hepatic steatosis in ob/ob mice. J Appl Microbiol 121(3):800–810

    Article  CAS  Google Scholar 

  168. Gu Y, Wang X, Li J, Zhang Y, Zhong H, Liu R, Zhang D, Feng Q, Xie X, Hong J, Ren H, Liu W, Ma J, Su Q, Zhang H, Yang J, Wang X, Zhao X, Gu W, Bi Y, Peng Y, Xu X, Xia H, Li F, Xu X, Yang H, Xu G, Madsen L, Kristiansen K, Ning G, Wang W (2017) Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun 8(1):1785. https://doi.org/10.1038/s41467-017-01682-2

    Article  CAS  Google Scholar 

  169. Lal N, Mehra S, Lal V (2014) Ultrasonographic measurement of normal common bile duct diameter and its correlation with age, sex and anthropometry. J Clin Diagn Res 8(12):AC01-4. https://doi.org/10.7860/JCDR/2014/8738.5232

    Article  Google Scholar 

  170. Wu CC, Weng WL, Lai WL, Tsai HP, Liu WH, Lee MH et al (2015) Effect of lactobacillus plantarum strain K21 on high-fat diet-fed obese mice. Evid Based Complement Alternat Med 2015:391767. https://doi.org/10.1155/2015/391767

    Article  Google Scholar 

  171. Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D (2012) Comparative meta-analysis of the effect of lactobacillus species on weight gain in humans and animals. Microb Pathog 53(2):100–108. https://doi.org/10.1016/j.micpath.2012.05.007

    Article  Google Scholar 

  172. Michael DR, Davies TS, Moss JWE, Calvente DL, Ramji DP, Marchesi JR, Pechlivanis A, Plummer SF, Hughes TR (2017) The anti-cholesterolaemic effect of a consortium of probiotics: an acute study in C57BL/6J mice. Sci Rep 7(1):2883. https://doi.org/10.1038/s41598-017-02889-5

    Article  CAS  Google Scholar 

  173. Arora T, Anastasovska J, Gibson G, Tuohy K, Sharma RK, Bell J et al (2012) Effect of lactobacillus acidophilus NCDC 13 supplementation on the progression of obesity in diet-induced obese mice. Br J Nutr 108(8):1382–1389. https://doi.org/10.1017/S0007114511006957

    Article  CAS  Google Scholar 

  174. Vinderola G, Gueimonde M, Gomez-Gallego C, Defederico L, Salminen S (2017) Correlation between in vitro and in vivo assays in selection of probiotics from traditional species of bacteria. Trends Food Sci Technol 68:83–90. https://doi.org/10.1016/j.tifs.2017.08.005

    Article  CAS  Google Scholar 

  175. Fijan S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 11(5):4745–4767. https://doi.org/10.3390/ijerph110504745

    Article  Google Scholar 

  176. Câmara NO, Iseki K, Kramer H, Liu ZH, Sharma K (2017) Kidney disease and obesity: epidemiology, mechanisms and treatment. Nat Rev Nephrol 13(3):181–190. https://doi.org/10.1038/nrneph.2016.191. Review

    Article  Google Scholar 

  177. Babb AL, Ahmad S, Bergström J, Scribner BH (1981) The middle molecule hypothesis in perspective. Am J Kidney Dis 1(1):46–50

    Article  CAS  Google Scholar 

  178. Vanholder R, Van Laecke S, Glorieux G (2008) The middle-molecule hypothesis 30 years after: lost and rediscovered in the universe of uremic toxicity? J Nephrol 21(2):146–160. Review

    CAS  Google Scholar 

  179. Castillo-Rodriguez E, Fernandez-Prado R, Esteras R, Perez-Gomez MV, Gracia-Iguacel C, Fernandez-Fernandez B, Kanbay M, Tejedor A, Lazaro A, Ruiz-Ortega M, Gonzalez-Parra E, Sanz AB, Ortiz A, Sanchez-Niño MD (2018) Impact of altered intestinal microbiota on chronic kidney disease progression. Toxins (Basel) 10(7):E300. https://doi.org/10.3390/toxins10070300

    Article  CAS  Google Scholar 

  180. Youssef DM, Fawzy FM (2012) Value of renal resistive index as an early marker of diabetic nephropathy in children with type-1 diabetes mellitus. Saudi J Kidney Dis Transpl 23(5):985–992. https://doi.org/10.4103/1319-2442.100880

    Article  Google Scholar 

  181. Natarajan R, Pechenyak B, Vyas U, Ranganathan P, Weinberg A, Liang P, Mallappallil MC, Norin AJ, Friedman EA, Saggi SJ (2014) Randomized controlled trial of strain-specific probiotic formulation (Renadyl) in dialysis patients. Biomed Res Int 2014:568571. https://doi.org/10.1155/2014/568571

    Article  CAS  Google Scholar 

  182. Bubnov RV, Melnyk IM Evaluation of biomarkers for diagnosnostic decision making in patients with gout using novel mathematical model. Complex PPPM approach. EPMA J 5(Suppl 1):A58

    Google Scholar 

  183. Cao T, Li X, Mao T, Liu H, Zhao Q, Ding X, Li C, Zhang L, Tian Z (2017) Probiotic therapy alleviates hyperuricemia in C57BL/6 mouse model. Biomed Res 28(5):2244–2249

    CAS  Google Scholar 

  184. García-Arroyo FE, Gonzaga G, Muñoz-Jiménez I, Blas-Marron MG, Silverio O, Tapia E, Soto V, Ranganathan N, Ranganathan P, Vyas U, Irvin A, Ir D, Robertson CE, Frank DN, Johnson RJ, Sánchez-Lozada LG (2018) Probiotic supplements prevented oxonic acid-induced hyperuricemia and renal damage. PLoS One 13(8):e0202901. https://doi.org/10.1371/journal.pone.0202901

    Article  CAS  Google Scholar 

  185. Vieira AT, Galvão I, Amaral FA, Teixeira MM, Nicoli JR, Martins FS (2015) Oral treatment with Bifidobacterium longum 51A reduced inflammation in a murine experimental model of gout. Benef Microb 6(6):799–806. https://doi.org/10.3920/BM2015.0015

    Article  CAS  Google Scholar 

  186. Bubnov R, Petrenko L (2016) Asthma-associated factors – potential predictive markers for patients stratification, personalized treatments and prevention. Eur Respir J 48(Suppl. 60):3366. https://doi.org/10.1183/13993003.congress-2016.PA3366

    Article  Google Scholar 

  187. Liu J, Chen FH, Qiu SQ, Yang LT, Zhang HP, Liu JQ, Geng XR, Yang G, Liu ZQ, Li J, Liu ZG, Li HB, Yang PC (2016) Probiotics enhance the effect of allergy immunotherapy on regulating antigen specific B cell activity in asthma patients. Am J Transl Res 8(12):5256–5270

    CAS  Google Scholar 

  188. Tapiovaara L, Pitkaranta A, Korpela R (2016) Probiotics and the upper respiratory tract – a review. Pediatric Infect Dis 1:19. https://doi.org/10.21767/2573-0282.100019

    Article  Google Scholar 

  189. Kam HY, Ou LC, Thron CD, Smith RP, Leiter JC (1985) Role of the spleen in the exaggerated polycythemic response to hypoxia in chronic mountain sickness in rats. J Appl Physiol 87(5):1901–1908

    Article  Google Scholar 

  190. Khailova L, Baird CH, Rush AA, Barnes C, Wischmeyer PE (2016) Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates inflammatory response and homeostasis of spleen and colon in experimental model of Pseudomonas aeruginosa pneumonia. Clin Nutr S0261-5614(16):31265–31261. https://doi.org/10.1016/j.clnu.2016.09.025

    Article  CAS  Google Scholar 

  191. Cukrowska B, Motyl I, Kozáková H, Schwarzer M, Górecki RK, Klewicka E, Slizewska K, Libudzisz Z (2009) Probiotic lactobacillus strains: in vitro and in vivo studies. Folia Microbiol (Praha) 54(6):533–537. https://doi.org/10.1007/s12223-009-0077-7

    Article  CAS  Google Scholar 

  192. Li Z, Chalazonitis A, Huang YY, Mann JJ, Margolis KG, Yang QM et al (2011) Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J Neurosci 31:8998–9009

    Article  CAS  Google Scholar 

  193. Crane JD, Palanivel R, Mottillo EP, Bujak AL, Wang H, Ford RJ et al (2015) Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat Med 21(2):166–172

    Article  CAS  Google Scholar 

  194. Khan WI, Ghia JE (2010) Gut hormones: emerging role in immune activation and inflammation. Clin Exp Immunol 161:19–27

    Article  CAS  Google Scholar 

  195. Benyuk VO, Kalenskaya OV, Goncharenko VM, Strokan AM, Bubnov RV (2016) Immunohistological chemichal research of the apoptosis and endometrium APUD-system state interreaction in normal and pathological conditions. Women Health 1:63–66. Accessed 20.04.2018 http://nbuv.gov.ua/UJRN/Zdzh_2016_1_12

    Google Scholar 

  196. Goncharenko VM, Beniuk VA, Demchenko OM, Spivak MY, Bubnov RV (2013) Predictive diagnosis of endometrial hyperplasia and personalized therapeutic strategy in fertile age women. EPMA J 4:24. https://doi.org/10.1186/1878-5085-4-24

    Article  Google Scholar 

  197. Carlson MJ, Thiel K, w., Yang S, Leslie KK. (2012) Catch it before it kills: progesterone, obesity, and the prevention of endometrial cancer. Discov Med 14(76):215–222

    Google Scholar 

  198. Moorthy K, Yadav UC, Mantha AK, Cowsik SM, Sharma D, Basir SF, Baquer NZ (2004) Estradiol and progesterone treatments change the lipid profile in naturally menopausal rats from different age groups. Biogerontology 5(6):411–419

    Article  CAS  Google Scholar 

  199. Spaggiari G, Brigante G, De Vincentis S, Cattini U, Roli L, De Santis MC, Baraldi E, Tagliavini S, Varani M, Trenti T, Rochira V, Simoni M, Santi D (2017) Probiotics ingestion does not directly affect thyroid hormonal parameters in hypothyroid patients on levothyroxine treatment. Front Endocrinol (Lausanne) 14(8):316. https://doi.org/10.3389/fendo.2017.00316

    Article  Google Scholar 

  200. Patil AD (2014) Link between hypothyroidism and small intestinal bacterial overgrowth. Indian J Endocrinol Metab 18(3):307–309. https://doi.org/10.4103/2230-8210.131155

    Article  Google Scholar 

  201. Gabrielli M, Lauritano EC, Scarpellini E, Lupascu A, Ojetti V, Gasbarrini G, Silveri NG, Gasbarrini A (2009 May) Bacillus clausii as a treatment of small intestinal bacterial overgrowth. Am J Gastroenterol 104(5):1327–1328

    Article  Google Scholar 

  202. Wojtyniak K, Horvath A, Dziechciarz P, Szajewska H (2017) Lactobacillus casei rhamnosus Lcr35 in the management of functional constipation in children: a randomized trial. J Pediatr 184:101–105

    Article  Google Scholar 

  203. Kim SE, Choi SC, Park KS, Park MI, Shin JE, Lee TH, Jung KW, Koo HS, Myung SJ (2015) Change of fecal flora and effectiveness of the short-term VSL#3 probiotic treatment in patients with functional constipation. J Neurogastroenterol Motil 21:111–120

    Article  CAS  Google Scholar 

  204. Šket R, Debevec T, Kublik S, Schloter M, Schoeller A, Murovec B, Vogel Mikuš K, Makuc D, Pečnik K, Plavec J, Mekjavić IB, Eiken O, Prevoršek Z, Stres B (2018) Intestinal metagenomes and metabolomes in healthy young males: inactivity and hypoxia generated negative physiological symptoms precede microbial Dysbiosis. Front Physiol 9:198. https://doi.org/10.3389/fphys.2018.00198

    Article  Google Scholar 

  205. Šket R, Treichel N, Debevec T, Eiken O, Mekjavic I, Schloter M, Vital M, Chandler J, Tiedje JM, Murovec B, Prevoršek Z (2017) Stres B hypoxia and inactivity related physiological changes (constipation, inflammation) are not reflected at the level of gut metabolites and butyrate producing microbial community: the PlanHab study. Front Physiol 8:250

    Article  Google Scholar 

  206. Vitetta L, Coulson S, Linnane AW, Butt H (2013) The gastrointestinal microbiome and musculoskeletal diseases: a beneficial role for probiotics and prebiotics. Pathogens 2(4):606–626. https://doi.org/10.3390/pathogens2040606

    Article  CAS  Google Scholar 

  207. Falvey E, Shanahan F, Cotter PD (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63(12):1913–1920. https://doi.org/10.1136/gutjnl-2013-306541

    Article  CAS  Google Scholar 

  208. Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF (2014) The microbiome: stress, health and disease. Mamm Genome 25(1–2):49–74. https://doi.org/10.1007/s00335-013-9488-5. Epub 2013 Nov 27. Review

    Article  CAS  Google Scholar 

  209. Cerdá B, Pérez M, Pérez-Santiago JD, Tornero-Aguilera JF, González-Soltero R, Larrosa M (2016) Gut microbiota modification: another piece in the puzzle of the benefits of physical exercise in health? Front Physiol 7:51. https://doi.org/10.3389/fphys.2016.00051

    Article  Google Scholar 

  210. WHO: Physical activity fact sheet, Updated February 2018. http://www.who.int/mediacentre/factsheets/fs385/en/

  211. Martin W, Roettger M, Kloesges T, Thiergart T, Woehle C, Gould S et al (2012) Modern endosymbiotic theory: getting lateral gene transfer into the equation. Endocytobiosis & Cell Research:23

    Google Scholar 

  212. Hu F, Liu F (2011) Mitochondrial stress: A bridge between mitochondrial dysfunction and metabolic diseases? Cell Signal 23:1528–1533

    Article  CAS  Google Scholar 

  213. Franco-Obregón A, Gilbert JA (2017) The microbiome-mitochondrion connection: common ancestries, common mechanisms, common goals. mSystems 2(3):pii: e00018-17. https://doi.org/10.1128/mSystems.00018-17

    Article  Google Scholar 

  214. Steves CJ, Bird S, Williams FM, Spector TD (2016) The microbiome and musculoskeletal conditions of aging: A review of evidence for impact and potential therapeutics. J Bone Miner Res 31(2):261–269. https://doi.org/10.1002/jbmr.2765

    Article  Google Scholar 

  215. Buigues C, Fernandez-Garrido J, Pruimboom L, Hoogland AJ, Navarro-Martinez R, Martinez-Martinez M, Verdejo Y, Mascaros MC, Peris C, Cauli O (2016) Effect of a prebiotic formulation on frailty syndrome: A randomized, double-blind clinical trial. Int J Mol Sci 17:932

    Article  Google Scholar 

  216. Britton RA, Irwin R, Quach D et al (2014) Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol 229(11):1822–1830

    Article  CAS  Google Scholar 

  217. Rankin A, O’Donavon C, Madigan SM, et al (2017) ‘Microbes in sport’ – the potential role of the gut microbiota in athlete health and performance Br J sports med published online first: 25 January 2017. https://doi.org/10.1136/bjsports-2016-097227

  218. O’Sullivan O, Cronin O, Clarke SF et al (2015) Exercise and the microbiota. Gut Microb 6:131–136

    Article  Google Scholar 

  219. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O’Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, O’Toole PW, Molloy MG, Falvey E, Shanahan F, Cotter PD (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63:1913–1920. https://doi.org/10.1136/gutjnl-2013-306541

    Article  CAS  Google Scholar 

  220. Morales-Alamo D, Guerra B, Santana A, Martin-Rincon M, Gelabert-Rebato M, Dorado C, Calbet JAL (2018) Skeletal muscle pyruvate dehydrogenase phosphorylation and lactate accumulation during Sprint exercise in Normoxia and severe acute hypoxia: effects of antioxidants. Front Physiol 9:188. https://doi.org/10.3389/fphys.2018.00188

    Article  Google Scholar 

  221. Bloch Y, Bouchareychas L, Merceron R, Składanowska K, Van den Bossche L, Detry S, Govindarajan S, Elewaut D, Haerynck F, Dullaers M, Adamopoulos IE, Savvides SN (2018) Structural activation of pro-inflammatory human cytokine IL-23 by cognate IL-23 receptor enables recruitment of the shared receptor IL-12Rβ1. Immunity 48(1):45–58.e6. https://doi.org/10.1016/j.immuni.2017.12.008

    Article  Google Scholar 

  222. So JS, Song MK, Kwon HK et al (2011) Lactobacillus casei enhances type II collagen/glucosamine-mediated suppression of inflammatory responses in experimental osteoarthritis. Life Sci 88(7–8):358–366

    Article  CAS  Google Scholar 

  223. Courties A, Sellam J, Berenbaum F (2017) Metabolic syndrome-associated osteoarthritis. Curr Opin Rheumatol 29(2):214–222. https://doi.org/10.1097/BOR.0000000000000373

    Article  CAS  Google Scholar 

  224. Sun AR, Panchal SK, Friis T et al (2017) Obesity-associated metabolic syndrome spontaneously induces infiltration of pro-inflammatory macrophage in synovium and promotes osteoarthritis. Gualillo O, ed. PLoS One 12(8):e0183693. https://doi.org/10.1371/journal.pone.0183693

    Article  CAS  Google Scholar 

  225. Collins KH, Paul HA, Reimer RA, Seerattan RA, Hart DA, Herzog W (2015) Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: studies in a rat model. Osteoarthr Cartil 23(11):1989–1998. https://doi.org/10.1016/j.joca.2015.03.014

    Article  CAS  Google Scholar 

  226. Queipo-Ortuño MI, Seoane LM, Murri M, Pardo M, Gomez-Zumaquero JM, Cardona F et al (2013) Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One 8:e65465. https://doi.org/10.1371/journal.pone.0065465

    Article  CAS  Google Scholar 

  227. Fouda MB, Thankam FG, Dilisio MF, Agrawal DK (2017) Alterations in tendon microenvironment in response to mechanical load: potential molecular targets for treatment strategies. Am J Transl Res 9(10):4341–4360

    CAS  Google Scholar 

  228. Miller FW, Lamb JA, Schmidt J, Nagaraju K (2018) Risk factors and disease mechanisms in myositis. Nature reviews. Rheumatology 14:255–268. https://doi.org/10.1038/nrrheum.2018.48

    Article  CAS  Google Scholar 

  229. Quintner J (1991) The RSI syndrome in historical perspective. Int Disabil Stud 13(3):99–104

    Article  CAS  Google Scholar 

  230. Bubnov RV (2010) The use of trigger point ‘dry’ needling under ultrasound guidance for the treatment of myofascial pain (technological innovation and literature review). Lik Sprava 5(6):56–64

    Google Scholar 

  231. Bubnov RV (2012) Evidence-based pain management: is the concept of integrative medicine applicable? EPMA J 3(1):13. https://doi.org/10.1186/1878-5085-3-13

    Article  Google Scholar 

  232. Bubnov R, Yevseenko V, Semeniv I (2013) Ultrasound guided injections of platelets rich in plasma for muscle injury in professional athletes: comparative study. Med Ultrasound 15(2):101–105

    Google Scholar 

  233. Centeno CJ, Al-Sayegh H, Freeman MD, Smith J, Centeno CJ, Al-Sayegh H, Freeman MD, Smith J, Murrell WD, Bubnov R (2016) A multi-center analysis of adverse events among two thousand, three hundred and seventy two adult patients undergoing adult autologous stem cell therapy for orthopaedic conditions. Int Orthop 40:1755–1765. https://doi.org/10.1007/s00264-016-3162-y

    Article  Google Scholar 

  234. De Morais PRS, Sousa ALL, Jardim T de SV, et al. Correlation of insulin resistance with anthropometric measures and blood pressure in adolescents. Arq Bras Cardiol 2016;106(4):319–326. doi:https://doi.org/10.5935/abc.20160041

  235. Sasaki R, Yano Y, Yasuma T, Onishi Y, Suzuki T, Maruyama-Furuta N, Gabazza EC, Sumida Y, Takei Y (2016) Association of Waist Circumference and Body fat Weight with insulin resistance in male subjects with Normal body mass index and Normal glucose tolerance. Intern Med 55(11):1425–1432. https://doi.org/10.2169/internalmedicine.55.4100

    Article  CAS  Google Scholar 

  236. Maenhaut N, Van de Voorde J (2011) Regulation of vascular tone by adipocytes. BMC Med 9:25

    Article  CAS  Google Scholar 

  237. Boydens C, Maenhaut N, Pauwels B, Decaluwé K, Van de Voorde J (2012) Curr Hypertens Rep 14(3):270–278

    Article  CAS  Google Scholar 

  238. van Dam AD, Boon MR, Berbée JFP, Rensen PCN, van Harmelen V (2017) Targeting white, brown and perivascular adipose tissue in atherosclerosis development. Eur J Pharmacol 816:82–92. https://doi.org/10.1016/j.ejphar.2017.03.051

    Article  CAS  Google Scholar 

  239. Omar A, Chatterjee TK, Tang Y, Hui DY, Weintraub NL (2014) Proinflammatory phenotype of perivascular adipocytes. Arterioscler Thromb Vasc Biol 34(8):1631–1636. https://doi.org/10.1161/ATVBAHA.114.303030

    Article  CAS  Google Scholar 

  240. Chatterjee TK, Stoll LL, Denning GM et al (2009) Pro-inflammatory phenotype of perivascular adipocytes: influence of high fat feeding. Circ Res 104(4):541–549. https://doi.org/10.1161/CIRCRESAHA.108.182998

    Article  CAS  Google Scholar 

  241. Meyer MR, Fredette NC, Barton M, Prossnitz ER (2013) Regulation of vascular smooth muscle tone by adipose-derived contracting factor. PLoS One 8(11):e79245

    Article  CAS  Google Scholar 

  242. Toda N, Okamura T (2013) Obesity impairs vasodilatation and blood flow increase mediated by endothelial nitric oxide: an overview. J Clin Pharmacol 53(12):1228–1239. https://doi.org/10.1002/jcph.179

    Article  CAS  Google Scholar 

  243. Jonk AM, Houben AJ, Schaper NC, de Leeuw PW, Serné EH, Smulders YM (2011) Stehouwer CD obesity is associated with impaired endothelial function in the postprandial state. Microvasc Res 82(3):423–429

    Article  CAS  Google Scholar 

  244. Chatsuriyawong S, Gozal D, Kheirandish-Gozal L, Bhattacharjee R, Khalyfa AA, Wang Y et al (2013) Genetic variance in nitric oxide synthase and endothelin genes among children with and without endothelial dysfunction. J Transl Med 11:227

    Article  Google Scholar 

  245. Leung TF, Liu EK, Tang NL, Ko FW, Li CY, Lam CW et al (2005) Nitric oxide synthase polymorphisms and asthma phenotypes in Chinese children. Clin Exp Allergy 35(10):1288–1294

    Article  CAS  Google Scholar 

  246. Pasarín M, Abraldes JG, Liguori E, Kok B, La Mura V (2017) Intrahepatic vascular changes in non-alcoholic fatty liver disease: potential role of insulin-resistance and endothelial dysfunction. World J Gastroenterol 23(37):6777–6787. https://doi.org/10.3748/wjg.v23.i37.6777

    Article  CAS  Google Scholar 

  247. Karagiannides I, Pothoulakis C (2008) Neuropeptides, mesenteric fat, and intestinal inflammation. Ann N Y Acad Sci 1144:127–135. https://doi.org/10.1196/annals.1418.009

    Article  CAS  Google Scholar 

  248. Cui X, Ye L, Li J, Jin L, Wang W, Li S, Bao M, Wu S, Li L, Geng B, Zhou X, Zhang J, Cai J (2018) Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 8(1):635. https://doi.org/10.1038/s41598-017-18756-2

    Article  CAS  Google Scholar 

  249. Bubnov RV (2011) Ultrasonography diagnostic capability for mesenteric vascular disorders. Gut 60(Suppl 3):A104

    Google Scholar 

  250. Reginelli A, Genovese E, Cappabianca S et al (2013) Intestinal ischemia: US-CT findings correlations. Crit Ultrasound J 5(Suppl 1):S7. https://doi.org/10.1186/2036-7902-5-S1-S7

    Article  Google Scholar 

  251. Glover LE, Lee JS, Colgan SP (2016) Oxygen metabolism and barrier regulation in the intestinal mucosa. J Clin Invest 126(10):3680–3688. https://doi.org/10.1172/JCI84429

    Article  Google Scholar 

  252. Faber F, Bäumler AJ (2014) The impact of intestinal inflammation on the nutritional environment of the gut microbiota. Immunol Lett 162(0):48–53. https://doi.org/10.1016/j.imlet.2014.04.014

    Article  CAS  Google Scholar 

  253. Bubnov RV, Moiseyenko YV (2017) Spivak MYa, NASC of Ukraine. The influence of environmental factors and stress on human health and chronic diseases: PPPM lessons from Antarctica, in EPMAWorld congress: traditional forum in predictive, preventive and personalised medicine for multi-professional consideration and consolidation. EPMA J 8(Suppl 1):S22–S23

    Google Scholar 

  254. Neis EP, van Eijk HM, Lenaerts K, Olde Damink SW, Blaak EE, Dejong CH, Rensen SS (2018. pii: gutjnl-2018-316161) Distal versus proximal intestinal short-chain fatty acid release in man. Gut. https://doi.org/10.1136/gutjnl-2018-316161

  255. Van Hul M, Lijnen H (2012) Matrix metalloproteinase inhibition affects adipose tissue mass in obese mice. Clin Exp Pharmacol Physiol 39:544

    Article  Google Scholar 

  256. Konieczka K, Ritch R, Traverso CE, Kim DM, Kook MS, Gallino A et al (2014) Flammer syndrome. EPMA J 5:11

    Article  Google Scholar 

  257. Yeghiazaryan K, Flammer J, Golubnitschaja O (2010) Predictive molecular profiling in blood of healthy vasospastic individuals: clue to targeted prevention as personalised medicine to effective costs. EPMA J 1(2):263–272. https://doi.org/10.1007/s13167-010-0032-3

    Article  Google Scholar 

  258. Bubnov R, Polivka J Jr, Zubor P, Koniczka K, Golubnitschaja O (2017) Pre-metastatic niches in breast cancer: are they created by or prior to the tumour onset? “Flammer syndrome” relevance to address the question. EPMA J 8:141–157. https://doi.org/10.1007/s13167-017-0092-8

    Article  Google Scholar 

  259. Rashid SK, Khodja NI, Auger C et al (2014) Probiotics (VSL#3) Prevent Endothelial Dysfunction in Rats with Portal Hypertension: Role of the Angiotensin System. Peiró C, ed. PLoS One 9(5):e97458. https://doi.org/10.1371/journal.pone.0097458

    Article  CAS  Google Scholar 

  260. Grech G, Zhan X, Yoo BC, Bubnov R, Hagan S, Danesi R, Vittadini G, Desiderio DM (2015) EPMA position paper in cancer: current overview and future perspectives. EPMA J 6(1):9. https://doi.org/10.1186/s13167-015-0030-6

    Article  Google Scholar 

  261. Cox TR, Rumney RMH, Schoof EM et al (2015) The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522(7554):106–110. https://doi.org/10.1038/nature14492

    Article  CAS  Google Scholar 

  262. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, Jia W, Cai S, Zhao L (2012) Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 6:320–329

    Article  CAS  Google Scholar 

  263. Roy S, Trinchieri G (2017) Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 17(5):271–285. https://doi.org/10.1038/nrc.2017.13

    Article  CAS  Google Scholar 

  264. York A (2018) Microbiome: gut microbiota sways response to cancer immunotherapy. Nat Rev Microbiol 16(3):121. https://doi.org/10.1038/nrmicro.2018.12

    Article  CAS  Google Scholar 

  265. Ciorba MA, Riehl TE, Rao MS, Moon C, Ee X, Nava GM, Walker MR, Marinshaw JM, Stappenbeck TS, Stenson WF (2012) Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/ cyclo-oxygenase-2-dependent manner. Gut 61:829–838

    Article  CAS  Google Scholar 

  266. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089

    Article  CAS  Google Scholar 

  267. Shapira N (2013) Women’s higher health risks in the obesogenic environment: a gender nutrition approach to metabolic dimorphism with predictive, preventive, and personalised medicine. EPMA J 4(1):1

    Article  Google Scholar 

  268. Haro C, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, Delgado-Lista J et al (2016) Intestinal microbiota is influenced by gender and body mass index. PLoS One 11(5):e0154090. https://doi.org/10.1371/journal.pone.0154090

    Article  CAS  Google Scholar 

  269. Reijnders D, Goossens GH, Hermes GD, Neis EP, van der Beek CM, Most J, Holst JJ, Lenaerts K, Kootte RS, Nieuwdorp M, Groen AK, Olde Damink SW, Boekschoten MV, Smidt H, Zoetendal EG, Dejong CH, Blaak EE (2016) Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: A randomized double-blind placebo-controlled trial. Cell Metab 24(1):63–74. https://doi.org/10.1016/j.cmet.2016.06.016

    Article  CAS  Google Scholar 

  270. Org E, Mehrabian M, Parks BW et al (2016) Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7(4):313–322. https://doi.org/10.1080/19490976.2016.1203502

    Article  CAS  Google Scholar 

  271. Rubinow KB (2017) Chapter 24: Estrogens and body weight regulation in men. Adv Exp Med Biol 1043:285–313. https://doi.org/10.1007/978-3-319-70178-3_14

    Article  CAS  Google Scholar 

  272. Dakin RS, Walker BR, Seckl JR, Hadoke PW, Drake AJ (2015) Estrogens protect male mice from obesity complications and influence glucocorticoid metabolism. Int J Obes 39(10):1539–1547. Epub 2015 Jun 2

    Article  CAS  Google Scholar 

  273. Medrikova D, Jilkova ZM, Bardova K, Janovska P, Rossmeisl M, Kopecky J (2012) Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control. Int J Obes 36(2):262–272. Epub 2011 May 3

    Article  CAS  Google Scholar 

  274. Codner E, Soto N, Lopez P, Trejo L, Avila A, Eyzaguirre FC, Iniguez G, Cassorla F (2006) Diagnostic criteria for polycystic ovary syndrome and ovarian morphology in women with type 1 diabetes mellitus. J Clin Endocrinol Metab 91(6):2250–2256

    Article  CAS  Google Scholar 

  275. Lindheim L, Bashir M, Münzker J et al (2017) Alterations in Gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with Polycystic Ovary Syndrome (PCOS): A Pilot Study. Yu Y, ed. PLoS One 12(1):e0168390. https://doi.org/10.1371/journal.pone.0168390

    Article  CAS  Google Scholar 

  276. Torres PJ, Siakowska M, Banaszewska B, Pawelczyk L, Duleba AJ, Kelley ST, Thackray VG (2018) Gut microbial diversity in women with polycystic ovary syndrome correlates with Hyperandrogenism. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2017-02153

  277. Karamali M, Eghbalpour S, Rajabi S, Jamilian M, Bahmani F, Tajabadi-Ebrahimi M, Keneshlou F, Mirhashemi SM, Chamani M, Hashem Gelougerdi S, Asemi Z (2018) Effects of probiotic supplementation on hormonal profiles, biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Arch Iran Med 21(1):1–7

    Google Scholar 

  278. Metchnikoff E (1907) Lactic acid as inhibiting intestinal putrefaction. The prolongation of life: optimistic studies. William Heinemann, London, pp 161–183

    Google Scholar 

  279. Anukam KC, Reid G (2008) Probiotics: 100 years (1907–2007) after Elie Metchnikoff’s observations. In: Mendez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology, 2007th edn, pp 466–474

    Google Scholar 

  280. Hamilton-Miller J (2004) Probiotics and prebiotics in the elderly. Postgrad Med J 80(946):447–451. https://doi.org/10.1136/pgmj.2003.015339

    Article  CAS  Google Scholar 

  281. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184. https://doi.org/10.1038/nature11319

    Article  CAS  Google Scholar 

  282. Vieira AT, Castelo PM, Ribeiro DA, Ferreira CM (2017) Influence of Oral and gut microbiota in the health of menopausal women. Front Microbiol 8:1884. https://doi.org/10.3389/fmicb.2017.01884

    Article  Google Scholar 

  283. Wellons MF, Matthews JJ, Kim C (2017) Ovarian aging in women with diabetes: an overview. Maturitas 96:109–113. https://doi.org/10.1016/j.maturitas.2016.11.019

    Article  CAS  Google Scholar 

  284. Landete JM, Gaya P, Rodríguez E, Langa S, Peirotén Á, Medina M, Arqués JL (2017) Probiotic bacteria for healthier aging: immunomodulation and metabolism of phytoestrogens. Biomed Res Int 2017:5939818. https://doi.org/10.1155/2017/5939818

    Article  CAS  Google Scholar 

  285. Gupta VK, Paul S, Dutta C (2017) Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol 8:1162. https://doi.org/10.3389/fmicb.2017.01162

    Article  Google Scholar 

  286. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A et al (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555(7695):210–215. https://doi.org/10.1038/nature25973

    Article  CAS  Google Scholar 

  287. Marco ML, Tachon S (2013) Environmental factors influencing the efficacy of probiotic bacteria. Curr Opin Biotechnol 24(2):207–213. https://doi.org/10.1016/j.copbio.2012.10.002

    Article  CAS  Google Scholar 

  288. Adams RI, Bateman AC, Bik HM, Meadow JF (2015) Microbiota of the indoor environment: a meta-analysis. Microbiome 3:49. https://doi.org/10.1186/s40168-015-0108-3

    Article  Google Scholar 

  289. Zuo T, Kamm MA, Colombel JF, Ng SC (2018) Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/s41575-018-0003-z

  290. Ouwehand AC (2017) A review of dose-responses of probiotics in human studies. Benef Microb 8(2):143–151. https://doi.org/10.3920/BM2016.0140. Epub 2016 Dec 23

    Article  CAS  Google Scholar 

  291. Larsen CN, Nielsen S, Kaestel P, Brockmann E, Bennedsen M, Christensen HR, Eskesen DC, Jacobsen BL, Michaelsen KF (2006) Dose-response study of probiotic bacteria Bifidobacterium animalis subsp lactis BB-12 and lactobacillus paracasei subsp paracasei CRL-341 in healthy young adults. Eur J Clin Nutr 60(11):1284–1293. Epub 2006 May 24

    Article  CAS  Google Scholar 

  292. Chen J, He X, Huang J (2014) Diet effects in gut microbiome and obesity. J Food Sci 79(4):R442–R451. https://doi.org/10.1111/1750-3841.12397

    Article  CAS  Google Scholar 

  293. Larsen N (2018) The effect of pectins on survival of probiotic lactobacillus spp. in gastrointestinal juices is related to their structure and physical properties. Food Microbiol 74:11e20. https://doi.org/10.1016/j.fm.2018.02.015

    Article  CAS  Google Scholar 

  294. Wei M, Wang S, Gu P et al (2018) Comparison of physicochemical indexes, amino acids, phenolic compounds and volatile compounds in bog bilberry juice fermented by lactobacillus plantarumunder different pH conditions. J Food Sci Technol. https://doi.org/10.1007/s13197-018-3141-y

  295. Putignani L, Dallapiccola B (2016 Sep) Foodomics as part of the host-microbiota-exposome interplay. J Proteome 16(147):3–20. https://doi.org/10.1016/j.jprot.2016.04.033

    Article  CAS  Google Scholar 

  296. Bomba A, Petrov VO, Drobnych VG, Bubnov RV, Boyko NV (2016) Cells, animal, SHIME and in silico models for detection and verification of specific biomarkers of non-communicable chronic diseases. EPMA J 7(Suppl 1):A8

    Google Scholar 

  297. Petschow B, Doré J, Hibberd P, Dinan T, Reid G, Blaser M, Cani P, Degnan F, Foster J, Gibson G, Hutton J, Klaenhammer TR, Ley R, Nieuwdorp M, Pot B, Relma D, Serazin A, Sanders ME (2013) Probiotics, prebiotics, and the host microbiome: the science of translation. Ann N Y Acad Sci 1306:1–17

    Article  CAS  Google Scholar 

  298. Shane AL, Cabana M, Vidry S, Merenstein D, Hummelen R, Ellis CL, Heimbach JT, Hempel S, Lynch S, Sanders ME, Tancredi DJ (2010) Guide to designing, conducting, publishing, and communicating results of clinical studies involving probiotic applications in human participants. Gut Microbes 1:243–253

    Article  Google Scholar 

  299. Reid G, Gaudier E, Guarner F, Huffnagle GB, Macklaim JM, Munoz AM, Martini M, Ringel-Kulka T, Sartor B, Unal R, Verbeke K, Walter J (2010) International scientific Association for Probiotics and Prebiotics. Responders and non-responders to probiotic interventions: how can we improve the odds? Gut Microbes 1(3):200–204. https://doi.org/10.4161/gmic.1.3.12013

    Article  Google Scholar 

  300. Zmora N, Zeevi D, Korem T, Segal E, Elinav E (2016) Taking it personally: personalized utilization of the human microbiome in health and disease. Cell Host Microb 19(1):12–20. https://doi.org/10.1016/j.chom.2015.12.016. Review

    Article  CAS  Google Scholar 

  301. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Dorrestein PC, Knight R (2016) Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535(7610):94–103. https://doi.org/10.1038/nature18850. Review

    Article  CAS  Google Scholar 

  302. Wu L, Ma D, Walton-Moss B, He Z (2014) Effects of low-fat diet on serum lipids in premenopausal and postmenopausal women: a meta-analysis of randomized controlled trials. Menopause 21(1):89–99

    Article  CAS  Google Scholar 

  303. Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88(10):2427–2439. Erratum in: Ecology. 2009 Dec;90(12):3593

    Article  Google Scholar 

  304. WGO updates guidelines on probiotics and prebiotics. http://www.worldgastroenterology.org/UserFiles/file/guidelines/Probiotics-and-prebiotics-English2017.pdf. Accessed 28 June 2017

  305. Reid G (2011) Quo vadis – EFSA? Benef Microb 2(3):177–181. https://doi.org/10.3920/BM2011.0026

    Article  CAS  Google Scholar 

  306. World Medical Association. Declaration of Helsinki. https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/. Accessed 29 Aug 2016

  307. Rhodes R (2016) Rhodes Ethical issues in microbiome research and medicine. BMC Med 14:156. https://doi.org/10.1186/s12916-016-0702-7

    Article  Google Scholar 

  308. Lima-Ojeda JM, Rupprecht R, Baghai TC (2017) “I am I and my bacterial circumstances”: linking gut microbiome, neurodevelopment, and depression. Front Psych 8:153. https://doi.org/10.3389/fpsyt.2017.00153

    Article  Google Scholar 

  309. Chuong KH, Hwang DM, Tullis DE et al (2017) Navigating social and ethical challenges of biobanking for human microbiome research. BMC Med Ethics 18:1. https://doi.org/10.1186/s12910-016-0160-y

    Article  Google Scholar 

  310. Ma Y, Chen H, Lei R et al (2017) Biobanking for human microbiome research: promise, risks, and ethics. ABR 9:311. https://doi.org/10.1007/s41649-017-0033-9

    Article  Google Scholar 

  311. Lewis ZT, Shani G, Masarweh CF, Popovic M, Frese SA, Sela DA, Underwood MA, Mills DA (2016) Validating bifidobacterial species and subspecies identity in commercial probiotic products. Pediatr Res 79(3):445–452. https://doi.org/10.1038/pr.2015.244

    Article  CAS  Google Scholar 

  312. Akhmetov I, Bubnov RV (2017) Innovative payer engagement strategies: will the convergence lead to better value creation in personalized medicine? EPMA J 8:1. https://doi.org/10.1007/s13167-017-0078-6

    Article  Google Scholar 

Download references

Author Contributions

RVB suggested the idea, did did the literature analysis, prepared discussion, formulated future outlooks, prepared the first draft and performed the second and final article drafting.

MYS did the revision manuscript and data interpretation, did the contribution to the overall development of the studied topic. Both authors read and approved the final manuscript.

Conflicts of Interest

Declare conflicts of interest or state “The authors declare no conflict of interest.”

Ethics

No human subjects or animals were included to the study. This study has been approved by the ethics committee of institutional review board and Special Academic Council on Doctoral Thesis of D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine (protocol N 7 issued 03.07.2018).

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bubnov, R., Spivak, M. (2023). Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. In: Boyko, N., Golubnitschaja, O. (eds) Microbiome in 3P Medicine Strategies. Advances in Predictive, Preventive and Personalised Medicine, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-031-19564-8_6

Download citation

Publish with us

Policies and ethics