Skip to main content

Abstract

This chapter discusses the main methods used for the synthesis of nanocrystallites of II-VI compounds. These methods include co-precipitation method, mechanochemical method, hydrothermal and solvothermal techniques, sol–gel processing, sonochemical method, microemulsion technique, microwave‑assisted method, hot-injection and one-step colloidal methods, photochemical synthesis, and green synthesis. The mechanisms and main regularities observed during the synthesis of II-VI compounds by the indicated methods are described. Examples are given that describe the main steps in the synthesis of nanoparticles. The effect of precursors, solvents, surfactants, capping agents, and synthesis conditions on the parameters of synthesized nanoparticles is analyzed. The advantages and disadvantages of these methods are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguayo OPY, Mouheb L, Revelo KV, Vásquez-Ucho PA, Pawar PP, Rahman A et al (2022) Biogenic sulfur-based chalcogenide nanocrystals: methods of fabrication, mechanistic aspects, and bio-applications. Molecules 27:458

    Article  Google Scholar 

  2. Al Balushi BSM, Al MF, Al WB, Kuvarega AT, Al Kindy SMZ, Kim Y, Selvaraj R (2018) Hydrothermal synthesis of CdS sub-microspheres for photocatalytic degradation of pharmaceuticals. Appl Surf Sci 457:559–565

    Article  ADS  Google Scholar 

  3. Anastas P, Warner J (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  4. Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR et al (2013) Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver NPs via cell-associated melanin. AMB Express 3(1):32

    Article  Google Scholar 

  5. Arachchige IU, Brock SL (2006) Sol-gel assembly of CdSe nanoparticles to form porous aerogel networks. J Am Chem Soc 128:7964–7971

    Article  Google Scholar 

  6. Arul Dhas N, Gedanken A (1998) A sonochemical approach to the surface synthesis of cadmium sulfide NPs on submicron silica. Appl Phys Lett 72(20):2514–2516

    Article  ADS  Google Scholar 

  7. Aubert T, Soenen SJ, Wassmuth D, Cirillo M, Van Deun R, Braeckmans K et al (2014) Bright and stable CdSe/CdS@ SiO2 NPs suitable for long-term cell labeling. ACS Appl Mater Interfaces 6(14):11714–11723

    Article  Google Scholar 

  8. Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Microwave assisted synthesis of colloidal inorganic nanocrystals. Angew Chem 50:11312–11359

    Article  Google Scholar 

  9. Bai H, Zhang Z, Guo Y, Jia W (2009) Biological synthesis of size-controlled cadmium sulfide NPs using immobilized Rhodobacter sphaeroides. Nanoscale Res Lett 4(7):717

    Article  ADS  Google Scholar 

  10. Baker S, Harini BP, Rakshith D, Satish S (2013) Marine microbes: invisible nanofactories. J Pharm Res 6(3):383–388

    Google Scholar 

  11. Baláž P, Boldižárová E, Godočı́ E., Briančin J. (2003) Mechanochemical route for sulphide NPs preparation. Mater Lett 57(9):1585–1589

    Article  Google Scholar 

  12. Bao H, Lu Z, Cui X, Qiao Y, Guo J, Anderson JM et al (2010) Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater 6:3534–3541

    Article  Google Scholar 

  13. Bhattacharjee B, Ganguli D, Iakoubovskii K, Sesmans A, Chaughuri S (2002) Synthesis and characterization of sol–gel derived ZnS:Mn2+ nanocrystallites embedded in a silica matrix. Bull Mater Sci 25(3):175–180

    Google Scholar 

  14. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374

    Article  ADS  Google Scholar 

  15. Bilecka I, Djerdj I, Niederberger M (2008) One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. Chem Commun 7:886–888

    Article  Google Scholar 

  16. Borovaya MN, Naumenko AP, Matvieieva NA, Blume YB, Yemets AI (2014) Biosynthesis of luminescent CdS QDs using plant hairy root culture. Nanoscale Res Lett 9(1):686

    Article  ADS  Google Scholar 

  17. Bozkurt PA, Derkuş B (2016) Synthesis and characterization of CdS NRs by combined sonochemical-solvothermal method. Mater Sci Poland 34(3):684–690

    Article  ADS  Google Scholar 

  18. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic, San Diego

    Google Scholar 

  19. Bu IYY (2013) Sol–gel synthesis of ZnS (O,OH) thin films: Influence of precursor and process temperature on its optoelectronic properties. J Lumin 134, 423–428

    Google Scholar 

  20. Bu H-B, Kikunaga H, Shimura K, Takahasi K, Taniguchi T, Kim DG (2013) Hydrothermal synthesis of thiol-capped CdTe nanoparticles and their optical properties. Phys Chem Chem Phys 15:2903

    Article  Google Scholar 

  21. Byrappa K, Yoshimura M (2012) Handbook of hydrothermal technology. Elsevier, New York

    Google Scholar 

  22. Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloidal Interface Sci 110(1–2):49–74

    Article  Google Scholar 

  23. Cao YC, Wang JH (2004) One-pot synthesis of high-quality zinc-blende CdS nanocrystals. J Am Chem Soc 126(44):14336–14337

    Article  Google Scholar 

  24. Capek RK, Lambert K, Dorfs D, Frederic P, Smet PF, Poelman D et al (2009) Synthesis of extremely small CdSe and bright blue luminescent CdSe/ZnS nanoparticles by a prefocused hot-injection approach. Chem Mater 21:1743–1749

    Article  Google Scholar 

  25. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic NPs using the filamentous fungus Neurospora crassa. Colloids Surf B: Biointerfaces 83(1):42–48

    Article  Google Scholar 

  26. Chen G, Yi B, Zeng G, Niu Q, Yan M, Chen A et al (2014) Facile green extracellular biosynthesis of CdS QDs by white rot fungus Phanerochaete chrysosporium. Colloids Surf B: Biointerfaces 117:199–205

    Article  Google Scholar 

  27. Cheon SY, Yoon J-S, Oh KH, Jang KY, Seo JH, Park JY et al (2017) Sonochemical synthesis of ZnO-ZnS core-shell nanorods for enhanced photoelectrochemical water oxidation. J Am Ceram Soc 100(9):3825–3834

    Article  Google Scholar 

  28. Corriu R, Anh NT (2009) Molecular chemistry of sol-gel derived nanomaterials. Wiley, Chichester

    Book  Google Scholar 

  29. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Article  Google Scholar 

  30. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML et al (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338(6216):596–597

    Article  ADS  Google Scholar 

  31. Devi RA, Latha M, Velumani S, Oza G, Reyes-Figueroa P, Rohini M, Yi J (2015) Synthesis and characterization of cadmium sulfide NPs by chemical precipitation method. J Nanosci Nanotechnol 15(11):8434–8439

    Article  Google Scholar 

  32. Dong CZ, Zhang LF, Chen S, Zhang MX, Feng L, Cui ZM, Zhang QJ (2013) Hollow structure of CdSe by W/O microemulsion method. In: Advanced materials research, vol 652. Trans Tech Publications, Zürich, pp 215–218

    Google Scholar 

  33. Du Y, Zeng F (2013) Solvothermal route to CdS nanocrystals. J Experim Nanosci 8(7–8):965–970

    Article  Google Scholar 

  34. Du J, Xu L, Zou G, Chai L, Qian Y (2006) Solvothermal synthesis of single crystalline ZnTe nanorod bundles in a mixed solvent of ethylenediamine and hydrazine hydrate. J Crystal Growth 291:183–186

    Article  ADS  Google Scholar 

  35. Duan J, Song L, Zhan J (2009) One-pot synthesis of highly luminescent CdTe QDs by microwave irradiation reduction and their Hg2+ −sensitive properties. Nano Res 2(1):61–68

    Google Scholar 

  36. Dutková E, Balaz P, Pourghahramani P (2009) CdS NPs mechanochemically synthesized in a high-energy mill. J Optoelectron Adv Mater 11(12):2102–2107

    Google Scholar 

  37. Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interf Sci 128–130:5–15

    Article  Google Scholar 

  38. Ebrahimi S, Yarmand B (2019) Morphology engineering and growth mechanism of ZnS nanostructures synthesized by solvothermal process. J Nanopart Res 21:264

    Article  Google Scholar 

  39. Edison TJI, Sethuraman MG (2012) Instant green synthesis of silver NPs using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem 47(9):1351–1357

    Article  Google Scholar 

  40. Elavarthi P, Kumar AA, Murali G, Reddy DA, Gunasekhar KR (2016) Room temperature ferromagnetism and white light emissive CdS: Cr NPs synthesized by chemical co-precipitation method. J Alloys Comp 656:510–517

    Article  Google Scholar 

  41. Esser P, Pohlmann B, Scharf H-D (1994) The photochemical synthesis of fine chemicals with sunlight. Angew Chem Int Ed Engl 33:2009–2023

    Article  Google Scholar 

  42. Fang Z, Fan Y, Liu Y (2011) Photochemical synthesis and photocatalysis application of ZnS/amorphous carbon nanotubes composites. Front Optoel China 4(1):121–127

    Article  Google Scholar 

  43. Fellowes JW, Pattrick RAD, Lloyd JR, Charnock JM, Coker VS, Mosselmans JFW et al (2013) Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors. Nanotechnology 24:145603

    Article  ADS  Google Scholar 

  44. Feng Y, Marusak KE, You L, Zauscher S (2018) Biosynthetic transition metal chalcogenide semiconductor nanoparticles: progress in synthesis, property control and applications. Curr Opin Colloid Interface Sci 38:190–203

    Article  Google Scholar 

  45. Feraru I, Vasiliu IC, Iordanescu R, Elisa M, Bartha C (2013) Structural characterization of CdSe-doped sol-gel silicophosphate films. Electron Mater Process 49(6):50–56

    Google Scholar 

  46. Gao B, Shen C, Yuan S, Yang Y, Chen G (2013) Synthesis of highly emissive CdSe quantum dots by aqueous precipitation method. J Nanomater 2013:138526

    Article  Google Scholar 

  47. Gacoin T, Malier L, Boilot J-P (1997) Sol–gel transition in CdS colloids. J Mater Chem 7(6):859–860

    Article  Google Scholar 

  48. Gacoin T, Malier L, Counio G, Boilot J-P (1997) CdS nanoparticles and the sol-gel process. Proc SPIE 3136:358–365

    Article  ADS  Google Scholar 

  49. Gaeeni MR, Tohidian M, Majles-Ara M (2014) Green synthesis of CdSe colloidal nanocrystals with strong green emission by the sol−gel method. Ind Eng Chem Res 53:7598–7603

    Article  Google Scholar 

  50. Gao X, Wu J, Wei X, He C, Wang X, Guangsheng GG, Qiaosheng PQ (2012) Facile one-step photochemical synthesis of water soluble CdTe(S) nanocrystals with high quantum yields. J Mater Chem 22:6367–6373

    Article  Google Scholar 

  51. Gendanken A (2003) Sonpchemistry and its applications in nanochemistry. Curr Sci 85:1720–1722

    Google Scholar 

  52. Godočíková E, Baláž P, Gock E, Choi WS, Kim BS (2006) Mechanochemical synthesis of the nanocrystalline semiconductors in an industrial mill. Powder Technol 164(3):147–152

    Article  Google Scholar 

  53. Golsefidi MA, Ramandi MF, Shahkooie MAK (2016) Facile synthesis of CdTe nanoparticles and photo-degradation of Rhodamine B and methyl orange. J Mater Sci Mater Electron 27:12100–12105

    Article  Google Scholar 

  54. Gonzalez CM, Wu W-C, Tracy J, Martin B (2015) Photochemical synthesis of size-tailored hexagonal ZnS quantum dots. Chem Commun 51:3087–3090

    Article  Google Scholar 

  55. Goto F, Ichimura M, Arai E (1997) A new technique of compound semiconductor deposition from an aqueous solution by photochemical reactions. Jpn J Appl Phys 36(9A):L1146

    Article  ADS  Google Scholar 

  56. Grundler P (2007) Chemical sensors: an introduction for scientists and engineers. Springer, Berlin

    Google Scholar 

  57. Guglielmi M, Kickelbic G, Martucci A (eds) (2014) Sol-gel nanocomposites. Springer, New York

    Google Scholar 

  58. Guglielmi M, Martucci A, Fick J, Vitrant G (1998) Preparation and characterization of HgxCd1-xS and PbxCd1-xS quantum dots and doped thin films. J Sol–Gel Sci Technol 11:229–240

    Article  Google Scholar 

  59. Guglielmi M, Martucci A, Menegazzo E, Righini GC, Pelli S, Fick J, Vitrant G (1997) Control of semiconductor particle size in sol-gel thin films. J Sol-Gel Sci Techn 1–3:1017–1021

    Article  Google Scholar 

  60. Gupta AK, Kripal R (2012) EPR and photoluminescence properties of Mn2+ doped CdS NPs synthesized via co-precipitation method. Spectrochim Acta A 96:626–631

    Google Scholar 

  61. Hanifehpour Y, Hamnabard N, Mirtamizdoust B, Joo SW (2016) Sonochemical synthesis, characterization and sonocatalytic performance of terbium-doped CdS NPs. J Inorg Org Polymers Mater 3(26):623–631

    Article  Google Scholar 

  62. Han MY, Huang W, Chew CH, Gan LM, Zhang XJ, Ji W (1998) Large nonlinear absorption in coated Ag2S/CdS nanoparticles by inverse microemulsion. J Phys Chem B 102:1884–1887

    Google Scholar 

  63. Hao H, Yao X, Wang M (2007) Preparation and optical characteristics of ZnSe nanocrystals doped glass by sol–gel in situ crystallization method. Opt Mater 29:573–577

    Article  ADS  Google Scholar 

  64. Hao LY, Mo X, Wang CY, Wu Y, Huang DW, Zhu YR et al (2001) Fabrication of CdS nanocrystals with various morphologies in selective solvents via a convenient ultraviolet irradiation technique. Mater Res Bull 36:1005–1009

    Article  Google Scholar 

  65. Hao E, Sun H, Zhou Z, Liu J, Yang B, Shen J (1999) Synthesis and optical properties of CdSe and CdSe/CdS NPs. Chem Mater 11(11):3096–3102

    Article  Google Scholar 

  66. Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3:3794–3817

    Article  ADS  Google Scholar 

  67. He Z, Zhu H, Zhou P (2012) Microwave-assisted aqueous synthesis of highly luminescent carboxymethyl chitosan-coated CdTe/CdS QDs as fluorescent probe for live cell imaging. J Fluoresc 22(1):193–199

    Article  Google Scholar 

  68. He Y, Sai LM, Lu HT, Hu M, Lai WY, Fan QL et al (2007) Microwave-assisted synthesis of water-dispersed CdTe NCs with high luminescent efficiency and narrow size distribution. Chem Mater 19(3):359–365

    Article  ADS  Google Scholar 

  69. He Y, Lu HT, Sai LM, Lai WY, Fan QL, Wang LH et al (2006) Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core—shell NCs with high photoluminescence. J Phys Chem B 110(27):13370–13374

    Article  Google Scholar 

  70. He R, Qian XF, Yin J, Xi HA, Bian LJ, Zhu ZK (2003) Formation of monodispersed PVP-capped ZnS and CdS NCs under microwave irradiation. Colloids Surf A Physicochem Eng Aspects 220(1):151–157

    Article  Google Scholar 

  71. Hirai T, Shiojiri S, Komasawa I (1994) Preparation of metal sulfide composite ultrafine particles in reverse micellar systems and their photocatalytic property. J Chem Eng Jpn 27:590–597

    Article  Google Scholar 

  72. Hoa TTQ, Vu LV, Canh TD, Long NN (2009) Preparation of ZnS nanoparticles by hydrothermal method. J Phys Conf Series 187:012081

    Article  Google Scholar 

  73. Holmes JD, Bhargava PA, Korgel BA, Johnston KP (1999) Synthesis of cadmium sulfide Q particles in water-in-CO2 microemulsions. Langmuir 15(20):6613–6615

    Article  Google Scholar 

  74. Huang S (2006) The study of optical characteristic of ZnSe nanocrystal. Appl Phys B Lasers Opt 84:323–326

    Article  ADS  Google Scholar 

  75. Huang J, Xie Y, Li B, Liu Y, Lu J, Qian Y (2001) Ultrasound-induced formation of CdS nanostructures in oil-in-water microemulsions. J Colloid Interface Sci 236:382–384

    Article  ADS  Google Scholar 

  76. Hullavarad NV, Hullavarad SS (2007) Synthesis and characterization of monodispersed CdS NPs in SiO2 fibers by sol–gel method. Photon Nanostr-Fundam Appl 5(4):156–163

    Article  ADS  Google Scholar 

  77. Hutagalung SD, Loo SC (2007) Zinc selenide (ZnSe) nanoparticles prepared by sol-gel method. In: Proceedings of the 7th IEEE International Conference on Nanotechnology, August, vol 2–5, Hong Kong, pp 930–933

    Google Scholar 

  78. Hwang CH, Park JP, Song MY, Lee JH, Shim IW (2011) Syntheses of CdTe QDs and NPs through simple sonochemical method under multibubble sonoluminescence conditions. Bull Korean Chem Soc 32(7):2207–2211

    Article  Google Scholar 

  79. Ichimura M, Maeda Y (2015) Conduction type of nonstoichiometric alloy semiconductor CuxZnyS deposited by the photochemical deposition method. Thin Solid Films 594:277–281

    Article  ADS  Google Scholar 

  80. Ilanchezhiyan P, Mohan KG, Xiao F, Poongothai S, Madhan KA, Siva C et al (2017) Ultrasonic-assisted synthesis of ZnTe nanostructures and their structural, electrochemical and photoelectrical properties. Ultrason Sonochem 39:414–419

    Article  Google Scholar 

  81. Iranmanesh P, Saeedni S, Nourzpoor M (2015) Characterization of ZnS nanoparticles synthesized by co-precipitation methodCharacterization of ZnS nanoparticles synthesized by co-precipitation method. Chin Phys B 24(4):046104

    Article  ADS  Google Scholar 

  82. Jacob JM, Lens PNL, Balakrishnan RM (2016) Microbial synthesis of chalcogenide semiconductor nanoparticles: a review. Microbial Biotechnol 9(1):11–21

    Article  Google Scholar 

  83. Jadhav AP, Kim CW, Cha HG, Pawar AU, Jadhav NA, Pal U et al (2009) Effect of different surfactants on the size control and optical properties of Y2O3:Eu3+ nanoparticles prepared by co-precipitation methods. J Phys Chem C 113(31):13600–13604

    Google Scholar 

  84. Jemal K, Sandeep BV, Pola S (2017) Synthesis, characterization, and evaluation of the antibacterial activity of allophylus serratus leaf and leaf derived callus extracts mediated silver NPs. J Nanomater 2017:4213275

    Article  Google Scholar 

  85. Jiang L, Yang M, Zhu S, Pang G, Feng S (2008) Phase evolution and morphology control of ZnS in a solvothermal system with a single precursor. J Phys Chem C 112:15281

    Article  Google Scholar 

  86. Julián B, Planelles J, Cordoncillo E, Escribano P, Sanchez C, Aschehoug P et al (2007) Gel elaboration and optical features of Eu3+-doped CdS nanocrystals in SiO2. Mater Sci Forum 555:389–393

    Article  Google Scholar 

  87. Kamalov VF, Little R, Logunov SL, El-Sayed MA (1996) Picosecond electronic relaxation in CdS/HgS/CdS quantum dot quantum well semiconductor nanoparticles. J Phys Chem 100:6381–6384

    Article  Google Scholar 

  88. Kanatzia A, Papageorgiou CH, Lioutas CH, Kyratsi TH (2013) Design of ball-milling experiments on Bi2Te3 thermoelectric material. J Electron Mater 42(7):1652–1660

    Article  ADS  Google Scholar 

  89. Kang B, Chang SQ, Dai YD, Chen D (2008a) Synthesis of green CdSe/chitosan QDs using a polymer-assisted c-radiation route. Rad Phys Chem 77(7):859–863

    Article  ADS  Google Scholar 

  90. Kang SH, Bozhilov KN, Myung NV, Mulchandani A, Chen W (2008b) Microbial synthesis of CdS NCs in genetically engineered E. coli. Angew Chem Int Ed 47(28):5186–5189. https://doi.org/10.1002/anie.200705806

    Article  Google Scholar 

  91. Karimi JA, Mohsenzadeh S (2012) Phytosynthesis of cadmium oxide NPs from Achillea wilhelmsii flowers. J Chem 2013:147613

    Google Scholar 

  92. Karkas MD, Porco JA Jr, Stephenson CRJ (2016) Photochemical approaches to complex chemotypes: applications in natural product synthesis. Chem Rev 116(17):9683–9747

    Article  Google Scholar 

  93. Kashinath L, Namratha K, Srikantaswamy S, Vinu A, Byrappa K (2017) Microwave treated sol–gel synthesis and characterization of hybrid ZnS–RGO composites for efficient photodegradation of dyes. New J Chem 41:1723–1735

    Article  Google Scholar 

  94. Khafajeh R, Molaei M, Karimipour M (2017) Synthesis of ZnSe and ZnSe:Cu quantum dots by a room temperature photochemical (UV-assisted) approach using Na2SeO3 as Se source and investigating optical properties. Luminescence 32(4):581–587

    Google Scholar 

  95. Kharissova OV, Kharisov BI, González CMO, Méndez YP, López I (2019) Greener synthesis of chemical compounds and materials. R Soc Open Sci 6:191378

    Article  ADS  Google Scholar 

  96. Khiew PS, Huang NM, Radiman S, Ahmad MS (2004) Synthesis and characterization of conducting polyaniline-coated cadmium sulphide nanocomposites in reverse microemulsion. Mater Lett 58(3):516–521

    Article  Google Scholar 

  97. Koch CC (1997) Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct Mater 9:13–22

    Article  Google Scholar 

  98. Koch CC (1991) Mechanical milling and alloying. In: Cahn RW, Haasen P, Kramer EJ (eds) Materials science and technology, vol 15. VCH Verlagsgesellschaft GmbH, Weinheim, pp 193–245

    Google Scholar 

  99. Komarneni S, Sakka S, Phule PP, Laine RM (eds) (1998) Sol-gel synthesis and Processisng, Ceramic transactions, vol 95. Wiley, New York

    Google Scholar 

  100. Korotcenkov G (2020) Handbook of humidity measurement: methods, materials and technologies, Sensing Materials and Technologies, vol 3. CRC Press, Boca Raton

    Book  Google Scholar 

  101. Korotcenkov G (ed) (2010) Chemical sensors: fundamentals of sensing materials. Vol. 1: General approaches. Momentum Press, New York

    Google Scholar 

  102. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS NPs, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78(5):583–588

    Article  Google Scholar 

  103. Kristl M, Ban I, Gyergyek S (2013) Preparation of nanosized copper and cadmium chalcogenides by mechanochemical synthesis. Mater Manufact Proces 28(9):1009–1013

    Google Scholar 

  104. Kristl M, Ban I, Danč A, Danč V, Drofenik M (2010) A sonochemical method for the preparation of cadmium sulfide and cadmium selenide NPs in aqueous solutions. Ultrason Sonochem 17(5):916–922

    Article  Google Scholar 

  105. Kumar SA, Ansary AA, Ahmad A, Khan MI (2007) Extracellular biosynthesis of CdSe QDs by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3(2):190–194

    Article  Google Scholar 

  106. Kumaresan R, Ichimura M, Arai E (2002) Photochemical deposition of ZnSe polycrystalline thin films and their characterization. Thin Solid Films 414:25–30

    Article  ADS  Google Scholar 

  107. Lagashettya A, Havanoor V, Basavaraja S, Balaji SD, Venkataraman A (2007) Microwave-assisted route for synthesis of nanosized metal oxides. Sci Technol Adv Mater 8:484–493

    Article  Google Scholar 

  108. Lamer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  Google Scholar 

  109. Li J, Wu Q, Wu J (2016) Synthesis of nanoparticles via solvothermal and hydrothermal methods. In: Aliofkhazraei M (ed) Handbook of nanoparticles. Springer, New York, pp 295–328

    Chapter  Google Scholar 

  110. Li H, Wang C, Peng Z, Fu X (2015) A review on the synthesis methods of CdSeS-based nanostructures. J Nanomater 2015:519385

    Article  Google Scholar 

  111. Li D, Wang S, Wang J, Zhang X, Liu S (2013) Synthesis of CdTe/TiO2 nanoparticles and their photocatalytic activity. Mater Res Bull 48(10):4283–4286

    Article  Google Scholar 

  112. Li H, Qu F (2007) Synthesis of CdTe quantum dots in sol-gel-derived composite silica spheres coated with calix[4]arene as luminescent probes for pesticides. Chem Mater 19:4148–4154

    Article  Google Scholar 

  113. Li X-H, Li J-X, Li G-D, Liu D-P, Chen J-S (2007) Controlled synthesis, growth mechanism, and properties of monodisperse CdS colloidal spheres. Eur J Chem A 13:8754–8761

    Article  Google Scholar 

  114. Li Z, Hou B, Xu Y, Wu D, Sun Y, Hu W et al (2005) Comparative study of sol–gel-hydrothermal and sol–gel synthesis of titania–silica composite nanoparticles. J Solid State Chem 178(5):1395–1405

    Article  ADS  Google Scholar 

  115. Li C, Murase N (2004) Synthesis of highly luminescent glasses incorporating CdTe NCs through Sol–Gel processing. Langmuir 20(1):1–4

    Article  Google Scholar 

  116. Li Z, Zhang J, Du J, Mu T, Liu Z, Chen J et al (2004) Preparation of cadmium sulfide/poly (methyl methacrylate) composites by precipitation with compressed CO2. J Appl Polym Sci 94(4):1643–1648

    Article  Google Scholar 

  117. Li Y, Ding Y, Wang Z (1999) A novel chemical route to ZnTe semiconductor nanorods. Adv Mater 11:847–850

    Article  Google Scholar 

  118. Li G, Nogami M (1994) Preparation and optical properties of solgel derived ZnSe crystallites doped in glass films. J Appl Phys 75:4276

    Article  ADS  Google Scholar 

  119. Liao X-H, Zhu J-J, Chen H-J (2001) Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution. Mater Sci Eng B 85:85–91

    Article  Google Scholar 

  120. Lifshitz E, Dag I, Litvin I, Hodes G, Gorer S, Reisfeld R et al (1998) Optical properties of CdSe nanoparticle films prepared by chemical deposition and sol–gel methods. Chem Phys Lett 288:188–196

    Article  ADS  Google Scholar 

  121. Liu M, Zhao H, Chen S, Wang H, Quan X (2012) Photochemical synthesis of highly fluorescent CdTe quantum dots for “on–off–on” detection of Cu(II) ions. Inorg Chim Acta 392:236–240

    Article  Google Scholar 

  122. Lee HL, Issam AM, Belmahi M, Assouar MB, Rinnert H, Alnot M (2009) Synthesis and characterizations of bare CdS nanocrystals using chemical precipitation method for photoluminescence application. J Nanomater 2009:914501

    Article  Google Scholar 

  123. Liu J, Xue D (2010) Morphology-controlled synthesis of CdSe semiconductor through a low-temperature hydrothermal method. Phys Scr T139:014075

    Article  ADS  Google Scholar 

  124. Liu P, Wang Q, Li X (2009) Studies on CdSe/L-cysteine quantum dots synthesized in aqueous solution for biological labelling. J Phys Chem C 113:7670–7676

    Article  Google Scholar 

  125. Loudhaief N, Labiadh H, Hannachi E, Zouaoui M, Ben SM (2018) Synthesis of CdS nanoparticles by hydrothermal method and their effects on the electrical properties of bi-based superconductors. J Superconduct Novel Magnet 31:2305–2312

    Article  Google Scholar 

  126. Majid A, Bibi M (2018) Cadmium based II-VI semiconducting nanomaterials. Springer Nature, Cham

    Book  Google Scholar 

  127. Majid A, Arshad H, Murtaza S (2015) Synthesis and characterization of Cr doped CdSe NPs. Superlatt Microstr 85:620–623

    Article  ADS  Google Scholar 

  128. Mal J, Nancharaiah YV, van Hullebusch ED, Lens PNL (2016) Metal chalcogenide quantum dots: biotechnological synthesis and applications. RSC Adv 6:41477–41495

    Article  ADS  Google Scholar 

  129. Malik MA, Wani MY, Hashim MA (2012) Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update. Arab J Chem 5(4):397–417

    Article  Google Scholar 

  130. Mao Y, Park T-J, Zhang F, Zhou H, Wong SS (2007) Environmentally friendly methodologies of nanostructure synthesis. Small 3(7):1122–1139

    Article  Google Scholar 

  131. Menezes FD, Galembeck A, Junior SA (2011) New methodology for obtaining CdTe QDs by using ultrasound. Ultrason Sonochem 18(5):1008–1011

    Article  Google Scholar 

  132. Meng L-Y, Wang B, Ma M-G, Lin K-L (2016) The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater Today Chem 1–2:63–83

    Article  Google Scholar 

  133. Mittal AK, Kaler A, Banerjee UC (2012) Free radical scavenging and antioxidant activity of silver NPs synthesized from flower extract of rhododendron dauricum. Nano Biomed Eng 4(3):118–124

    Article  Google Scholar 

  134. Mirzaei A, Neri G (2016) Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application. A review Sens Actuators B 237:749–775

    Article  Google Scholar 

  135. Mo X, Wang CY, You M, Zhu YR, Chen ZY, Hu Y (2001) A novel ultraviolet-irradiation route to CdS nanocrystallites with different morphologies. Mater Res Bull 36:2277–2282

    Article  Google Scholar 

  136. Modeshia DR, Walton RI (2010) Solvothermal synthesis of perovskites and pyrochlores: crystallization of functional oxides under mild conditions. Chem Soc Rev 39:4303–4325

    Article  Google Scholar 

  137. Moon J-W, Ivanov IN, Duty CE, Love LJ, Rondinone AJ, Wang W et al (2013) Scalable economic extracellular synthesis of CdS nanostructured particles by a non-pathogenic thermophile. J Industr Microbiol Biotechnol 40:1263–1271

    Article  Google Scholar 

  138. Motshekga SC, Pillai SK, Ray SS, Jalama K, Krause RWM (2012) Recent trends in the microwave-assisted synthesis of metal oxide nanoparticles supported on carbon nanotubes and their applications. J Nanomater 2:1–12

    Article  Google Scholar 

  139. Mntungwa N, Puilabhotla VSR, Revaprasadu N (2012) The synthesis of core-shell metal-semiconductor nanomaterials. Mater Lett 81:108–111

    Article  Google Scholar 

  140. Munirah KMS, Aziz A, Rahman SA, Khan ZR (2013) Spectroscopic studies of sol–gel grown CdS nanocrystalline thin films for optoelectronic devices. Mater Sci Semicond Proc 16:1894–1898

    Article  Google Scholar 

  141. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  Google Scholar 

  142. Muruganandam S, Anbalagan G, Murugadoss G (2017) Structural, electrochemical and magnetic properties of codoped (Cu, Mn) CdS NPs with surfactant PVP. Opt-Intern J Light Electron Opt 131:826–837

    Article  Google Scholar 

  143. Niederberger M (2007) Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc Chem Res 40:793–800

    Article  Google Scholar 

  144. Nishimura H, Lin Y, Hizume M, Taniguchi T, Shigekawa N, Takagi T et al (2019) Hydrothermal synthesis of ZnSe:Mn quantum dots and their optical properties. AIP Adv 9:025223

    Article  ADS  Google Scholar 

  145. Nogami M, Nagasaka K, Suzuki T (1992) Sol-gel synthesis of cadmium telluride-microcrystal-doped silica glasses. J Am Ceram Soc 75(1):220–223

    Article  Google Scholar 

  146. Nogi K, Hosokawa M, Naito M, Yokoyama T (eds) (2012) Nanoparticle technology handbook. Elsevier, Oxford

    Google Scholar 

  147. Omran BA, Whitehead KA, Baek K-H (2021) One-pot bioinspired synthesis of fluorescent metal chalcogenide and carbon quantum dots: applications and potential biotoxicity. Colloid Surf Biointerfaces 200:111578

    Article  Google Scholar 

  148. Onwudiwe DC, Krüger TP, Oluwatobi OS, Strydom CA (2014) Nanosecond laser irradiation synthesis of CdS NPs in a PVA system. Appl Surf Sci 290:18–26

    Article  ADS  Google Scholar 

  149. Ouyang JY, Vincent M, Kingston D, Descours P, Boivineau T, Zaman B et al (2009) Noninjection, onepot synthesis of photoluminescent colloidal homogeneously alloyed CdSeS quantum dots. J Phys Chem C 113(13):5193–5200

    Article  Google Scholar 

  150. Qian H, Li L, Ren J (2005) One-step and rapid synthesis of high quality alloyed QDs (CdSe–CdS) in aqueous phase by microwave irradiation with controllable temperature. Mater Res Bull 40(10):1726–1736

    Article  Google Scholar 

  151. Panda AB, Glaspell G, El-Shall MS (2006) Microwave synthesis of highly aligned ultra-narrow semiconductor rods and wires. J Am Chem Soc 128:2790–2791

    Article  Google Scholar 

  152. Pandian SRK, Deepak V, Kalishwaralal K, Gurunathan S (2011) Biologically synthesized fluorescent CdS NPs encapsulated by PHB. Enzym Microb Technol 48(4):319–325

    Article  Google Scholar 

  153. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Intern Ed 46:4630–4660

    Article  Google Scholar 

  154. Peng X, Sclamp MC, Kadavanich AV, Alivisatos AP, Epitaxial AP (1997) Growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019–7029

    Article  Google Scholar 

  155. Phuruangrat A, Thongtem T, Sinaim H, Thongtem S (2013) Synthesis of cadmium selenide nanorods by polyethylene glycol-assisted solvothermal process. J Experimen Nanosci 8(6):654–660

    Google Scholar 

  156. Plaza DO, Gallardo C, Straub YD, Bravo D, Pérez-Donoso JM (2016) Biological synthesis of fluorescent NPs by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories. Microb Cell Factor 15(1):76

    Article  Google Scholar 

  157. Rabinal MHK, Gunnagol RM, Hodlur RM (2016) Recent developments in the green syntheses of chalcogenide based semi-conductor nanoparticles. Curr Nanomater 1:12–60

    Article  Google Scholar 

  158. Raj FM, Rajendran AJ (2015) Synthesis and characterization of cadmium sulfide NPs for the applications of dye sensitized solar cell. Intern J Innov Res Sci Eng Technol 4(1):56–60

    Google Scholar 

  159. Rao BS, Kumar BR, Reddy VR, Rao TS, Chalapathi GV (2011) Preparation and characterization of CdS NPs by chemical co-precipitation technique. Chalcogenide Lett 8(3):177–185

    Google Scholar 

  160. Rathinama I, Parvathi AA, Pandiarajan J, Jeyakumaran N, Prithivikumaran N (2013) Influence of annealing temperature on structural and optical properties of CdS thin films prepared by sol-gel spin coating method. In: Proceedings of the “International Conference on Advanced Nanomaterials & Emerging Engineering Technologies” (ICANMEET-20J3), Chennai, India, 24–26 July, 2013, pp 713–717

    Google Scholar 

  161. Reddy CV, Vattikuti SP, Shim J (2016) Synthesis, structural and optical properties of CdS NPs with enhanced photocatalytic activities by photodegradation of organic dye molecules. J Mater Sci Mater Electron 27(8):7799–7808

    Article  Google Scholar 

  162. Roberts BA, Strauss CR (2005) Toward rapid “green” predictable microwave-assisted synthesis. Acc Chem Res 38:653–661

    Article  Google Scholar 

  163. Salavati-Niasari M, Bazarganipour M, Ghasemi-Kooch M (2015) Facile sonochemical synthesis and characterization of CdTe NPs. Synth React Inorg Metal-Org Nano-Metal Chem 45(10):1558–1564

    Article  Google Scholar 

  164. Sangsefidi FS, Salavati-Niasari M, Esmaeili-Zare M (2013) Hydrothermal method for synthesis of HgTe nanorods in presence of a novel precursor. Supperlatt Microstructur 62:1–11

    Article  ADS  Google Scholar 

  165. Saraji, M., Dizajib, H. R., Fallaha, M. (2012). An efficient method for synthesis and characterization of CdS and CdS:Cu NPs by microwave irradiation. In: Proceedings of the 4th international conference on nanostructures, pp. 1495–1497

    Google Scholar 

  166. Saravanan L, Pandurangan A, Jayavel R (2012) Synthesis and luminescence enhancement of cerium doped CdS NPs. Mater Lett 66(1):343–345

    Article  Google Scholar 

  167. Saravanan P, Gopalan R, Chandrasekaran V (2008) Synthesis and characterisation of nanomaterials. Defence Sci J 58(4):504–516

    Article  Google Scholar 

  168. Schanche JS (2003) Microwave synthesis solutions from personal chemistry. Mol Divers 7:293–300

    Article  Google Scholar 

  169. Schneider R, Balan L (2012) Hydrothermal routes for the synthesis of CdSe Core quantum dots. In: Al-Ahmadi A (ed) Nanotechnology and nanomaterials: state of the art of quantum dot systems fabrications. Intech, pp 119–140

    Google Scholar 

  170. Schwartz RW, Schneller T, Waser R (2004) Chemical solution deposition of electronic oxide films. C R Chim 7:433–461

    Article  Google Scholar 

  171. Serrano T, Gómez I, Colás R, Cavazos J (2009) Synthesis of CdS NCs stabilized with sodium citrate. Colloids Surf A: Physicochem Eng Aspects 338(1):20–24

    Article  Google Scholar 

  172. Shafiee S, Akhavan O, Hatami H, Hoseinkhani P (2015) Sol-gel synthesis of thermoluminescent Cd-doped ZnTe nanoparticles. Indian J Pure Appl Phys 53:804–807

    Google Scholar 

  173. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic NPs via biological entities. Materials 8(11):7278–7308

    Article  ADS  Google Scholar 

  174. Sharma K, Kumar A (2014) Synthesis and characterization of pure and Zn doped CdSe NPs by ultrasonication technique. Am Intern J Res Sci Technol Eng Math 8:75–79

    Google Scholar 

  175. Shao M, Xu F, Peng Y, Wu J, Li Q, Zhang S et al (2002) Microwave-templated synthesis of CdS NTs in aqueous solution at room temperature. New J Chem 26(10):1440–1442

    Article  Google Scholar 

  176. Sheldrick WS, Wachhold M (1997) Solventothermal synthesis of solid-state chalcogenidometalates. Angew Chem Int Ed Engl 36:206–224

    Article  Google Scholar 

  177. Shen L, Bao N, Prevelige PE, Gupta A (2010) Escherichia coli bacteria-templated synthesis of nanoporous cadmium sulfide hollow microrods for efficient photocatalytic hydrogen production. J Phys Chem C 114(6):2551–2559

    Article  Google Scholar 

  178. Shkir M, Aarya S, Singh R, Arora M, Bhagavannarayana G, Senguttuvan TD (2012) Synthesis of ZnTe nanoparticles by microwave irradiation technique, and their characterization. Nanosci Nanotechnol Lett 4:405–408

    Article  Google Scholar 

  179. Singh P, Kim YJ, Wang C, Mathiyalagan R, El-Agamy Farh M, Yang DC (2016) Biogenic silver and gold NPs synthesized using red ginseng root extract, and their applications. Artif Cells Nanomed Biotechnol 44(3):811–816

    Google Scholar 

  180. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of NPs from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  Google Scholar 

  181. Singh BR, Dwivedi S, Al-Khedhairy AA, Musarrat J (2011) Synthesis of stable cadmium sulfide NPs using surfactin produced by Bacillus amyloliquefaciens strain KSU-109. Colloids Surf B: Biointerfaces 85(2):207–213

    Article  Google Scholar 

  182. Skubi KL, Blum TR, Yoon TP (2016) Dual catalysis strategies in photochemical synthesis. Chem Rev 116(17):10035–10074

    Article  Google Scholar 

  183. Sofronov DS, Sofronova EM, Starikov VV, Baumer VN, Matejchenko PV, Galkin SN et al (2013) Microwave synthesis of ZnSe. J Mater Eng Perform 22:1637–1641

    Article  Google Scholar 

  184. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ (2005) Nanoemulsions. Curr Opin Colloid Interface Sci 10:102–110

    Article  Google Scholar 

  185. Song J, Dai Z, Guo W, Li Y, Wang W, Li N et al (2013) Preparation of CdTe/CdS/SiO2 core/multishell structured composite NPs. J Nanosci Nanotechnol 13(10):6924–6927

    Google Scholar 

  186. Sonker RK, Yadav BC, Gupta V, Tomar M (2020) Synthesis of CdS nanoparticle by sol-gel method as low temperature NO2 sensor. Mater Chem Phys 239:121975

    Article  Google Scholar 

  187. Sostaric JZ, Caruso-Hobson RA, Mulvaney P, Grieser F (1997) Ultrasound-induced formation and dissolution of colloidal CdS. J Chem Soc Faraday Trans 93(9):1791–1795

    Article  Google Scholar 

  188. Starnic V, Etsell TH, Pierre AC, Mikula RJ (1997) Sol-gel processing of ZnS. Mater Lett 31:35–38

    Article  Google Scholar 

  189. Suriwong T, Phuruangrat A, Thongtem S, Thongtem T (2015) Synthesis, characterization and photoluminescence properties of CdTe nanocrystals. J Ovonic Res 11(6):257–261

    Google Scholar 

  190. Suslick KS, Fang MM, Hyeon T, Mdleleni MM (1999) Applications of sonochemistry to materials synthesis. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and Sonoluminescence. Springer, Netherlands, pp 291–320

    Chapter  Google Scholar 

  191. Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G et al (2004) Bacterial biosynthesis of cadmium sulfide NCs. Chem Biol 11(11):1553–1559

    Article  Google Scholar 

  192. Tan GL, Yu XF (2009) Capping the ball-milled CdSe nanocrystals for light excitation. J Phys Chem C 113(20):8724–8729

    Article  Google Scholar 

  193. Tan GL, Zhang L, Yu XF (2009) Preparation and optical properties of CdS NCs prepared by a mechanical alloying process. J Phys Chem C 114(1):290–293

    Article  Google Scholar 

  194. Tan GL, Hömmerich U, Temple D, Wu NQ, Zheng JG, Loutts G (2003) Synthesis and optical characterization of CdTe NCs prepared by ball milling process. Scripta Mater 48(10):1469–1474

    Article  Google Scholar 

  195. Taurino AM, Epifani M, Taccoli T, Iannotta S, Siciliano P (2003) Innovative aspects in thin film technologies for nanostructured materials in gas sensor devices. Thin Solid Films 436:52–63

    Google Scholar 

  196. Tho NTM, An TNM, Tri MD, Sreekanth TVM, Lee JS, Nagajyothi PC et al (2013) Green synthesis of silver NPs using Nelumbo nucifera seed extract and its antibacterial activity. Acta Chim Slovenica 60(3):673–678

    Google Scholar 

  197. Tolia JV, Chakraborty M, Murthy ZVP (2012) Mechanochemical synthesis and characterization of group II-VI semiconductor NPs. Partic Sci Technol 30(6):533–542

    Article  Google Scholar 

  198. Tsuzuki T, McCormick PG (1997) Synthesis of CdS QDs by mechanochemical reaction. Appl Phys A: Mater Sci Proces 65(6):607–609

    Article  ADS  Google Scholar 

  199. Ulloa G, Collao B, Araneda M, Escobar B, Álvarez S, Bravo D et al (2016) Use of acidophilic bacteria of the genus Acidithiobacillus to biosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH. Enzyme Microbiol Technol 95:217–224

    Article  Google Scholar 

  200. Vaquero F, Navarro RM, Fierro JLG (2017) Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method. Appl Catal B Environ 203:753–767

    Article  Google Scholar 

  201. Venci X, Gerge A, Raj AD, Irudayaraj AA, Raj DMA, Jayakumar G, Sundaram SJ (2021) Tuning the morphology and band gap of CdSe nanoparticles via solvothermal method. Mater Today 36(2):459–463

    Google Scholar 

  202. Veeranarayanan S, Poulose AC, Mohamed MS, Nagaoka Y, Iwai S, Nakagame Y et al (2012) Synthesis and application of luminescent single CdS quantum dot encapsulated silica NPs directed for precision optical bioimaging. Intern J Nanomed 7:3769

    Google Scholar 

  203. Wan B, Hu C, Feng B, Xu J, Zhang Y, Tian Y (2010) Optical properties of ZnTe nanorods synthesized via a facile low-temperature solvothermal route. Mater Sci Eng B 171:11–15

    Article  Google Scholar 

  204. Wang J, Liu S, Mu Y, Liu L, Runa A, Su P et al (2017) Synthesis of uniform cadmium sulphide thin film by the homogeneous precipitation method on cadmium telluride nanorods and its application in three-dimensional heterojunction flexible solar cells. J Colloid Interface Sci 505:59–66

    Article  ADS  Google Scholar 

  205. Wang Q, Li J, Bai Y, Lian J, Huang H, Li Z et al (2014) Photochemical preparation of Cd/CdS photocatalysts and their efficient photocatalytic hydrogen production under visible light irradiation. Green Chem 16(5):2728–2735

    Article  Google Scholar 

  206. Wang Q, Pan D, Jiang S, Ji X, An L, Jiang B (2006) A solvothermal route to size- and shape-controlled CdSe and CdTe nanocrystals. J Crystal Growth 286:83–90

    Article  ADS  Google Scholar 

  207. Wang GZ, Chen W, Liang CH, Wang YW, Meng GW, Zhang LD (2001) Preparation and characterization of CdS nanoparticles by ultrasonic irradiation. Inorg Chem Commun 4(4):208–210

    Article  Google Scholar 

  208. Wang H, Zhang J-R, Zhu J-J (2001b) A microwave assisted heating method for the rapid synthesis of sphalrite-type mercury sulfide nanocrystals with different sizes. J Cryst Growth 233:829–836

    Article  ADS  Google Scholar 

  209. Wang CY, Mo X, Zhou Y, Zhu YR, Liu HT, Chen ZY (2000) A convenient ultraviolet irradiation technique for in situ synthesis of CdS nanocrystallites at room temperature. J Mater Chem 10:607–608

    Article  Google Scholar 

  210. Whiffen RK, Montone A, Pietrelli L, Pilloni L (2021) On tailoring co-precipitation synthesis to maximize production yield of nanocrystalline wurtzite ZnS. Nano 11:715

    Google Scholar 

  211. Yadav S, Yashas SR, Shivaraju HP (2021) Transitional metal chalcogenide nanostructures for remediation and energy: a review. Environ Chem Lett 19:683–3700

    Article  Google Scholar 

  212. Yan YL, Li Y, Qian XF, Yin J, Zhu ZK (2003) Preparation and characterization of CdSe NCs via Na2SO3-assisted photochemical route. Mater Sci Eng B 103(2):202–206

    Google Scholar 

  213. Yang G, Park S-J (2019) Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Materials 12:1177

    Article  ADS  Google Scholar 

  214. Yang Y, Gao MY (2005) Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Adv Mater 17(19):2354–2357

    Google Scholar 

  215. Yang H, McCormick PG (1998) Mechanically activated reduction of nickel oxide with graphite. Metall Mater Trans B Process Metall Mater Process Sci 29:449–455

    Article  Google Scholar 

  216. Yu S-H (2001) Hydrothermal/solvothermal processing of advanced ceramic materials. J Ceram Soc Jpn 109(5):S65–S75

    Article  Google Scholar 

  217. Yu SH, Wu YS, Yang J, Han ZH, Xie Y, Qian YT, Liu XM (1998) A novel solventothermal synthetic route to nanocrystalline CdE (E = S, Se, Te) and morphological control. Chem Mater 10:2309–2312

    Google Scholar 

  218. Yu SH, Shu L, Wu YS, Tang KB, Xie Y, Qian YT, Zhang YH (1998) Benzene-thermal synthesis and optical properties of CdS nanocrystalline. Nanostruct Mater 10:1307–1316

    Article  Google Scholar 

  219. Xi LF, Lam YM (2007) Synthesis and characterization of CdSe NRs using a novel microemulsion method at moderate temperature. J Colloid Interface Sci 316(2):771–778

    Article  ADS  Google Scholar 

  220. Xiong C, Liu M, Zhu X, Tang A (2019) A general one-pot approach to synthesize binary and ternary metal sulfide nanocrystals. Nanoscale Res Lett 14:19

    Article  ADS  Google Scholar 

  221. Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42(7):2555–2567

    Article  Google Scholar 

  222. Zelner M, Minti H, Reisfeld R, Cohen H, Feldman Y, Cohen SR, Tenne R (2001) Preparation and characterization of CdTe nanoparticles in zirconia films prepared by the sol gel method. J Sol-Gel Sci Technol 20:153–160

    Article  Google Scholar 

  223. Zhan HJ, Zhou PJ, Ma R, Liu XJ, He YN, Zhou CY (2014) Enhanced oxidation stability of quasi core-shell alloyed CdSeS QDs prepared through aqueous microwave synthesis technique. J Fluoresc 24(1):57–65

    Article  Google Scholar 

  224. Zhang R, Li G, Zhang Y (2017) Photochemical synthesis of CdS-MIL-125 (Ti) with enhanced visible light photocatalytic performance for the selective oxidation of benzyl alcohol to benzaldehyde. Photochem Photobiol Sci 16(6):996–1002

    Article  Google Scholar 

  225. Zhang YC, Wang GY, Hu XY, Shi QF, Qiao T, Yang Y (2005) Phase-controlled synthesis of ZnS nanocrystallites by mild solvothermal decomposition of an air-stable single-source molecular precursor. J Crystal Growth 284:554–560

    Article  ADS  Google Scholar 

  226. Zhang Q, Huang F, Li Y (2005) Cadmium sulfide NRs formed in microemulsions. Colloids Surf A Physicochem Eng Asp 257:497–501

    Article  Google Scholar 

  227. Zhang Y, Li Y (2004) Synthesis and characterization of monodisperse doped ZnS nanospheres with enhanced thermal stability. J Phys Chem B 108:17805

    Article  Google Scholar 

  228. Zhang H, Wang L, Xiong H, Hu L, Yang B, Li W (2003) Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv Mater 15:1712

    Article  Google Scholar 

  229. Zhao WB, Zhu JJ, Chen HY (2003) Photochemical preparation of rectangular PbSe and CdSe NPs. J Crystal Growth 252(4):587–592

    Article  ADS  Google Scholar 

  230. Zhong B, Kang W, Zhang Z, Zhang L, Ma B (2020) Facile one-pot solvothermal synthesis of CdTe nanorods and their photoelectrical properties. CrystEngComm 22:3927–3393

    Article  Google Scholar 

  231. Zhong WH (2012) Nanoscience and nanomaterials: synthesis, Manufacturing and Industry Impacts. DEStech Publications, Inc, Lancaster

    Google Scholar 

  232. Zhong H, Mirkovic T, Scholes GD (2011) Nanocrystal synthesis. In: Andrews DL, Scholes GD, Wiederrecht GP (eds) Comprehensive nanoscience and technology, vol 5. Elsevier, New York, pp 153–201

    Chapter  Google Scholar 

  233. Zhou GJ, Li SH, Zhang YC, Fu YZ (2014) Biosynthesis of CdS NPs in banana peel extract. J Nanosci Nanotechnol 14(6):4437–4442

    Article  Google Scholar 

  234. Zhou SM, Feng YS, Zhang LD (2003) Sonochemical synthesis of large-scale single crystal CdS NRs. Mater Lett 57(19):2936–2939

    Article  Google Scholar 

  235. Zhu J-J, Wang H (2004) Synthesis of metal chalcogenide nanoparticles synthesis of metal chalcogenide nanoparticles. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 10. American Scientific Publishers, pp 347–367

    Google Scholar 

  236. Zhu J, Liao X, Zhao X, Wang J (2001) Photochemical synthesis and characterization of CdSe NPs. Mater Lett 47(6):339–343

    Article  Google Scholar 

  237. Zhu J, Koltypin Y, Gedanken A (2000) General sonochemical method for the preparation of nanophasic selenides: synthesis of ZnSe nanoparticles. Chem Mater 12:73–78

    Article  Google Scholar 

  238. Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A (2000) A novel sonochemical method for the preparation of nanophasic sulfides: synthesis of HgS and PbS nanoparticles. J Solid State Chem 153:342–350

    Article  ADS  Google Scholar 

  239. Zhu J, Palchik O, Chen S, Gedanken A (2000) Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe NPs. J Phys Chem B 104(31):7344–7347

    Google Scholar 

  240. Ziegler J, Merkulov A, Grabolle M, Resch-Genger U, Nann T (2007) High-quality ZnS shells for CdSe nanoparticles: rapid microwave synthesis. Langmuir 23:7751–7759

    Article  Google Scholar 

  241. Zou Y, Li DS, Yang D (2010) Noninjection synthesis of CdS and alloyed CdS𝑥Se1−𝑥 nanocrystals without nucleation initiators. Nanoscale Res Lett 5(6):966–971

    Google Scholar 

  242. Zuala L, Agarwal P (2020) Growth and characterization of ZnSe nanocrystals synthesized using solvothermal process. J Mater Sci Mater Electron 31:14756–14766

    Article  Google Scholar 

Download references

Acknowledgments

G. Korotcenkov is grateful to the State Program of the Republic of Moldova, project 20.80009.5007.02, for supporting his research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korotcenkov, G., Pronin, I.A. (2023). Synthesis of II-VI Semiconductor Nanocrystals. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-19531-0_11

Download citation

Publish with us

Policies and ethics