Skip to main content

Diachronic Neural Network Predictor of Word Animacy

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2022)

Abstract

The paper considers the problem of automatic recognition of animacy in the Russian language. We propose a recognizer that is based on the analysis of co-occurrence with the most frequent words and is trained on data from the Russian subcorpus of Google Books Ngram. The obtained recognition accuracy of animacy is 94.3% on the test sample. We also consider the application of the trained recognizer to diachronic data. The performed analysis shows that high recognition accuracy can be obtained even using the data extracted from the corpus for one single year. This allows one, firstly, to diachronically investigate changes in perception of words for which variability of animacy/inanimacy is observed. Secondly, the considered examples show that change in perception of an object as animate or inanimate can serve as a marker of semantic change and, in particular, emergence of new meanings of a word denoting this object. This makes the recognizer a good tool for studies of language evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris, Z.: Papers in Structural and Transformational Linguistics. Reidel, Dordrecht (1970)

    Book  Google Scholar 

  2. Rubenstein, H., Goodenough, J.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965)

    Article  Google Scholar 

  3. Firth, J.R.: A synopsis of linguistic theory, studies in linguistic analysis 1930–1955. Spec. Vol. Phil. Soc. 1–32 (1957)

    Google Scholar 

  4. Weeds, J., Weir, D., McCarthy, D.: Characterising measures of lexical distributional similarity. In: Proceedings of the 20th International Conference on Computational Linguistics, Geneva, Switzerland, pp. 1015–1021. COLING (2004)

    Google Scholar 

  5. Pantel, P.: Inducing ontological co-occurrence vectors. In: Proceedings of the 43rd Conference of the Association for Computational Linguistics, pp. 125–132. Association for Computational Linguistics, USA (2005)

    Google Scholar 

  6. Bullinaria, J., Levy, J.: Extracting semantic representations from word co-occurrence statistics: a computational study. Behav. Res. Methods 39, 510–526 (2007). https://doi.org/10.3758/BF03193020

    Article  Google Scholar 

  7. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, vol. 26, pp. 3111–3119. Curran Associates, Inc. (2013)

    Google Scholar 

  8. Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65. ACL (2014)

    Google Scholar 

  9. Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Trans. Assoc. Comput. Linguist. 4, 31–45 (2016)

    Article  Google Scholar 

  10. Yao, Z., Sun, Y., Ding, W., Rao, N., Xiong, H.: Dynamic word embeddings for evolving semantic discovery. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, pp. 673– 681. ACM (2018)

    Google Scholar 

  11. Tang, X.: A state-of-the-art of semantic change computation. Nat. Lang. Eng. 24(5), 649–676 (2018)

    Article  Google Scholar 

  12. Kulkarni, V., Al-Rfou, R., Perozzi, B., Skiena, S.: Statistically significant detection of linguistic change. In: Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, pp. 625–635 (2015)

    Google Scholar 

  13. Giulianelli, M., Kutuzov, A., Pivovarova, L.: Grammatical profiling for semantic change detection. In: Proceedings of the 25th Conference on Computational Natural Language Learning, pp. 423–434. Association for Computational Linguistics (2021)

    Google Scholar 

  14. Vihman, V.-A., Nelson, D.: Effects of animacy in grammar and cognition: introduction to special issue. Open Linguist. 5(1), 260–267 (2019)

    Article  Google Scholar 

  15. Gao, T., Scholl, B., McCarthy, G.: Dissociating the detection of intentionality from animacy in the right posterior superior temporal sulcus. J. Neurosci. Off. J. Soc. Neurosci. 32, 14276–14280 (2012)

    Article  Google Scholar 

  16. Nieuwland, M., van Berkum, J.: When peanuts fall in love: N400 evidence for the power of discourse. J. Cogn. Neurosci. 18(7), 1098–1111 (2005)

    Article  Google Scholar 

  17. Lee, H., Chang, A., Peirsman, Y., Chambers, N., Surdeanu, M., Jurafsky, D.: Deterministic coreference resolution based on entity-centric, precision-ranked rules. Comput. Linguist. 39(4), 885–916 (2913)

    Google Scholar 

  18. Orasan, C., Evans, R.: NP animacy identification for anaphora resolution. J. Artif. Intell. Res. 29, 79–103 (2007)

    Article  Google Scholar 

  19. Chen, J., Schein, A., Ungar, L., Palmer, M.: An empirical study of the behavior of active learning for word sense disambiguation. In: Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, pp. 120–127. Association for Computational Linguistics (2006)

    Google Scholar 

  20. Coll Ardanuy, M., et al.: Living machines: a study of atypical animacy. In: Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, pp. 4534–4545. International Committee on Computational Linguistics (2020)

    Google Scholar 

  21. Karsdorp, F., van der Meulen, M., Meder, T., van den Bosch, A.: Animacy detection in stories. In: Proceedings of the 6th Workshop on Computational Models of Narrative, Saarbrücken/Wadern, Germany, pp. 82–97. Dagstuhl Publishing (2015)

    Google Scholar 

  22. Jahan, L., Chauhan, G., Finlayson, M.: A new approach to animacy detection. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico, USA, pp. 1–12. Association for Computational Linguistics (2018)

    Google Scholar 

  23. Bochkarev, V.V., Khristoforov, S.V., Shevlyakova, A.V., Solovyev, V.D.: Neural network algorithm for detection of new word meanings denoting named entities. IEEE Access 10, 68499–68512 (2022). https://doi.org/10.1109/ACCESS.2022.3186681

    Article  Google Scholar 

  24. Lin, Y., Michel, J.-B., Aiden, E.L., Orwant, J., Brockman, W., Petrov, S.: Syntactic Annotations for the Google Books Ngram Corpus. In: Li, H., Lin, C.-Y., Osborne, M., Lee, G.G., Park, J.C. (eds.) 50th Annual Meeting of the Association for Computational Linguistics 2012, Proceedings of the Conference, Jeju Island, Korea, vol. 2, pp. 238–242. Association for Computational Linguistics (2012)

    Google Scholar 

  25. Bocharov, V.V., Alexeeva, S.V., Granovsky, D.V., Protopopova, E.V., Stepanova, M.E., Surikov, A.V.: Crowdsourcing morphological annotation. In: Computational Linguistics and Intellectual Technologies. Papers from the Annual International Conference “Dialogue”, vol. 12, no. 1, pp. 109–115. RGGU, Moskow (2013)

    Google Scholar 

  26. OpenCorpora, n.d. http://opencorpora.org/dict.php. Accessed 14 July 2022

  27. Xu, Y., Kemp, C.: A computational evaluation of two laws of semantic change. In: Proceedings of the 37th Annual Meeting of the Cognitive Science Society, CogSci 2015, Pasadena, California, USA, 22–25 July 2015

    Google Scholar 

  28. Khristoforov, S., Bochkarev, V., Shevlyakova, A.: Recognition of parts of speech using the vector of bigram frequencies. In: van der Aalst, W.M.P., et al. (eds.) AIST 2019. CCIS, vol. 1086, pp. 132–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39575-9_13

    Chapter  Google Scholar 

  29. Bullinaria, J.A., Levy, J.P.: Extracting semantic representations from word co-occurrence statistics: Stop-lists, stemming, and SVD. Behav. Res. Methods 44(3), 890–907 (2012)

    Article  Google Scholar 

  30. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, vol. 2, Short Papers, pp. 427–431. Association for Computational Linguistics (2017)

    Google Scholar 

  31. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vectors for 157 languages. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), European Language Resources Association (ELRA), Miyazaki, Japan (2018)

    Google Scholar 

  32. Dubey, S.R., Singh, S.K., Chaudhuri, B.B.: Activation functions in deep learning: a comprehensive survey and benchmark. Neurocomputing 503, 92–108 (2022)

    Article  Google Scholar 

  33. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Sun, S., Cao, Z., Zhu, H., Zhao, J.: A survey of optimization methods from a machine learning perspective. IEEE Trans. Cybern. 50(8), 3668–3681 (2020)

    Article  Google Scholar 

  35. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (n.d.). https://www.tensorflow.org/. Accessed 28 July 2022

  36. Chollet, F.: Keras (n.d.). https://keras.io. Accessed 28 July 2022

  37. Antoniak, M., Mimno, D.: Evaluating the stability of embedding-based word similarities. Trans. Assoc. Comput. Linguist. 6, 107–119 (2018)

    Article  Google Scholar 

  38. Bochkarev, V.V., Maslennikova, Yu.S., Shevlyakova, A.V.: Testing of statistical significance of semantic changes detected by diachronic word embedding. J. Intell. Fuzzy Syst. 1–13 (2022). https://doi.org/10.3233/JIFS-212179

  39. Poor, H., Hadjiliadis, O.: Quickest Detection. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  40. Lavielle, M.: Using penalized contrasts for the change-point problem. Signal Process 85(8), 1501–1510 (2005)

    Article  MathSciNet  Google Scholar 

  41. Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of changepoints with a linear computational cost. J. Amer. Statist. Assoc. 107(500), 1590–1598 (2012)

    Article  MathSciNet  Google Scholar 

  42. Bochkarev, V., Shevlyakova, A.: Calculation of a confidence interval of semantic distance estimates obtained using a large diachronic corpus. J. Phys. Conf. Ser. 1730, 012031 (2021)

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by Russian Science Foundation, grant № 20-18-00206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Bochkarev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bochkarev, V., Achkeev, A., Shevlyakova, A., Khristoforov, S. (2022). Diachronic Neural Network Predictor of Word Animacy. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds) Advances in Computational Intelligence. MICAI 2022. Lecture Notes in Computer Science(), vol 13613. Springer, Cham. https://doi.org/10.1007/978-3-031-19496-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19496-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19495-5

  • Online ISBN: 978-3-031-19496-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics