Skip to main content

Impact of Loss Function in Deep Learning Methods for Accurate Retinal Vessel Segmentation

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13612))

Included in the following conference series:

  • 765 Accesses

Abstract

The retinal vessel network studied through fundus images contributes to the diagnosis of multiple diseases not only found in the eye. The segmentation of this system may help the specialized task of analyzing these images by assisting in the quantification of morphological characteristics. Due to its relevance, several Deep Learning-based architectures have been tested for tackling this problem automatically. However, the impact of loss function selection on the segmentation of the intricate retinal blood vessel system hasn’t been systematically evaluated. In this work, we present the comparison of the loss functions Binary Cross Entropy, Dice, Tversky, and Combo loss using the deep learning architectures (i.e. U-Net, Attention U-Net, and Nested UNet) with the DRIVE dataset. Their performance is assessed using four metrics: the AUC, the mean squared error, the dice score, and the Hausdorff distance. The models were trained with the same number of parameters and epochs. Using dice score and AUC, the best combination was SA-UNet with Combo loss, which had an average of 0.9442 and 0.809 respectively. The best average of Hausdorff distance and mean square error were obtained using the Nested U-Net with the Dice loss function, which had an average of 6.32 and 0.0241 respectively. The results showed that there is a significant difference in the selection of loss function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulsahib, A.A., Mahmoud, M.A., Mohammed, M.A., Rasheed, H.H., Mostafa, S.A., Maashi, M.S.: Comprehensive review of retinal blood vessel segmentation and classification techniques: intelligent solutions for green computing in medical images, current challenges, open issues, and knowledge gaps in fundus medical images. Network Modeling Anal. Health Inf. Bioinform. 10(1), 1–32 (2021). https://doi.org/10.1007/s13721-021-00294-7

    Article  Google Scholar 

  2. Abramoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3, 169–208 (2010). https://doi.org/10.1109/RBME.2010.2084567

    Article  Google Scholar 

  3. Çetinkaya, M.B., Duran, H.: A detailed and comparative work for retinal vessel segmentation based on the most effective heuristic approaches. Biomed. Eng./Biomedizinische Technik 66(2), 181–200 (2021). https://doi.org/10.1515/bmt-2020-0089

    Article  Google Scholar 

  4. Chen, C., Chuah, J.H., Ali, R., Wang, Y.: Retinal vessel segmentation using deep learning: A review. IEEE Access 9, 111985–112004 (2021). https://doi.org/10.1109/ACCESS.2021.3102176

    Article  Google Scholar 

  5. Galdran, A., Anjos, A., Dolz, J., Chakor, H., Lombaert, H., Ayed, I.B.: State-of-the-art retinal vessel segmentation with minimalistic models. Sci. Rep. 12(1), 6174 (2022). https://doi.org/10.1038/s41598-022-09675-y

    Article  Google Scholar 

  6. Guo, C., Szemenyei, M., Yi, Y., Wang, W., Chen, B., Fan, C.: Sa-unet: Spatial attention u-net for retinal vessel segmentation. ArXiv abs/2004.03696 (2020)

    Google Scholar 

  7. Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7. IEEE, October 2020. https://doi.org/10.1109/CIBCB48159.2020.9277638

  8. Kar, S.S., Maity, S.P.: Blood vessel extraction and optic disc removal using curvelet transform and kernel fuzzy c-means. Comput. Biol. Med. 70, 174–189 (2016). https://doi.org/10.1016/j.compbiomed.2015.12.018

    Article  Google Scholar 

  9. Khanal, A., Estrada, R.: Dynamic deep networks for retinal vessel segmentation. Front. Comput. Sci. 2, 35 (2020). https://doi.org/10.3389/fcomp.2020.00035

    Article  Google Scholar 

  10. Kumari, S., Venkatesh, P., Tandon, N., Chawla, R., Takkar, B., Kumar, A.: Selfie fundus imaging for diabetic retinopathy screening. Eye (2021). https://doi.org/10.1038/s41433-021-01804-7

    Article  Google Scholar 

  11. Ma, J., Chen, J., Ng, M., Huang, R., Li, Y., Li, C., Yang, X., Martel, A.L.: Loss odyssey in medical image segmentation. Med. Image Anal. 71, 102035 (2021). https://doi.org/10.1016/j.media.2021.102035

    Article  Google Scholar 

  12. Miri, M., Amini, Z., Rabbani, H., Kafieh, R.: A comprehensive study of retinal vessel classification methods in fundus images. J. Med. Sig. Sens. 7(2), 59–70 (2017)

    Article  Google Scholar 

  13. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas (2018). https://doi.org/10.48550/ARXIV.1804.03999

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Sisodia, D.S., Nair, S., Khobragade, P.: Diabetic retinal fundus images: preprocessing and feature extraction for early detection of diabetic retinopathy. Biomed. Pharmacol. J. 10(2), 615–626 (2017)

    Article  Google Scholar 

  16. Son, J., Park, S.J., Jung, K.-H.: Towards accurate segmentation of retinal vessels and the optic disc in fundoscopic images with generative adversarial networks. J. Digit. Imaging 32(3), 499–512 (2018). https://doi.org/10.1007/s10278-018-0126-3

    Article  Google Scholar 

  17. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004). https://doi.org/10.1109/TMI.2004.825627

    Article  Google Scholar 

  18. Taha, A.A., Hanbury, A.: Metrics for evaluating 3d medical image segmentation: analysis, selection, and tool. vol. 15, p. 29, December 2015. https://doi.org/10.1186/s12880-015-0068-x

  19. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  20. You, X., Peng, Q., Yuan, Y., Cheung, Y.m., Lei, J.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn.44(10–11), 2314–2324 (2011). https://doi.org/10.1016/j.patcog.2011.01.007

  21. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested u-net architecture for medical image segmentation. In: Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein, L., Tavares, J.M.R.S., Bradley, A., Papa, J.P., Belagiannis, V., Nascimento, J.C., Lu, Z., Conjeti, S., Moradi, M., Greenspan, H., Madabhushi, A. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the AI Hub and the CIIOT at ITESM for their support for carrying the experiments reported in this paper in their NVIDIA’s DGX computer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herrera, D., Ochoa-Ruiz, G., Gonzalez-Mendoza, M., Stephan-Otto, C., Mata, C. (2022). Impact of Loss Function in Deep Learning Methods for Accurate Retinal Vessel Segmentation. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds) Advances in Computational Intelligence. MICAI 2022. Lecture Notes in Computer Science(), vol 13612. Springer, Cham. https://doi.org/10.1007/978-3-031-19493-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19493-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19492-4

  • Online ISBN: 978-3-031-19493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics