Skip to main content

Comparison of Automatic Prostate Zones Segmentation Models in MRI Images Using U-net-like Architectures

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2022)

Abstract

Prostate cancer is the second-most frequently diagnosed cancer and the sixth leading cause of cancer death in males worldwide. The main problem that specialists face during the diagnosis of prostate cancer is the localization of Regions of Interest (ROI) containing a tumor tissue. Currently, the segmentation of this ROI in most cases is carried out manually by expert doctors, but the procedure is plagued with low detection rates (of about 27–44%) or over-diagnosis in some patients. Therefore, several research works have tackled the challenge of automatically segmenting and extracting features of the ROI from magnetic resonance images, as this process can greatly facilitate many diagnostic and therapeutic applications. However, the lack of clear prostate boundaries, the heterogeneity inherent to the prostate tissue, and the variety of prostate shapes makes this process very difficult to automate.In this work, six deep learning models were trained and analyzed with a dataset of MRI images obtained from the Centre Hospitalaire de Dijon and Universitat Politecnica de Catalunya. We carried out a comparison of multiple deep learning models (i.e. U-Net, Attention U-Net, Dense-UNet, Attention Dense-UNet, R2U-Net, and Attention R2U-Net) using categorical cross-entropy loss function. The analysis was performed using three metrics commonly used for image segmentation: Dice score, Jaccard index, and mean squared error. The model that give us the best result segmenting all the zones was R2U-Net, which achieved 0.869, 0.782, and 0.00013 for Dice, Jaccard and mean squared error, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society. Key statistics for prostate cancer: Prostate cancer facts. https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html. Accessed 17 Oct 2021

  2. AstraZeneca, A personalized approach in prostate cancer (2020). https://www.astrazeneca.com/our-therapy-areas/oncology/prostate-cancer.html. Accessed 17 Oct 2021

  3. Chen, M., et al.: Prostate cancer detection: comparison of t2-weighted imaging, diffusion-weighted imaging, proton magnetic resonance spectroscopic imaging, and the three techniques combined. Acta Radiologica 49(5), 602–610 (2008)

    Article  Google Scholar 

  4. Haralick, R., Shapiro, L.: Image segmentation techniques. Comput. Vision Graph. Image Process. 29(1), 100–132 (1985)

    Article  Google Scholar 

  5. Aldoj, N., Biavati, F., Michallek, F., Stober, S., Dewey, M.: Automatic prostate and prostate zones segmentation of magnetic resonance images using densenet-like u-net. Sci. Rep. 10, 08 (2020)

    Article  Google Scholar 

  6. Rasch, C.R.N., et al.: Human-computer interaction in radiotherapy target volume delineation: a prospective, multi-institutional comparison of user input devices. J. Digital Imaging 24(5), 794–803 (2011)

    Article  Google Scholar 

  7. Mahapatra, D., Buhmann, J.-M.: Prostate mri segmentation using learned semantic knowledge and graph cuts. IEEE Trans. Biomed. Eng. 61(3), 756–764 (2014)

    Article  Google Scholar 

  8. Elguindi, S., et al.: Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy. Phys. Imaging Radiat. Oncol. 12, 80–86 (2019)

    Article  Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Ibtehaz, N., Rahman, M.S.: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Article  Google Scholar 

  11. Yufeng, W., Jiachen, W., Jin, S., Cao, L., Jin, G.: Dense-u-net: dense encoder-decoder network for holographic imaging of 3D particle fields. Optics Commun. 493, 126970 (2021)

    Article  Google Scholar 

  12. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas (2018)

    Google Scholar 

  13. Rodríguez, J., Ochoa-Ruiz, G., Mata, C.: A prostate mri segmentation tool based on active contour models using a gradient vector flow. Appl. Sci. 10(18), 6163 (2020)

    Article  Google Scholar 

  14. Sun, Y.: Multiparametric mri and radiomics in prostate cancer: a review. Aust. Phys. Eng. Sci. Med. 42(1), 3–25 (2019)

    Article  Google Scholar 

  15. Gupta, R., Kauffman, C., Polascik, T., Taneja, S., Rosenkrantz, A.: The state of prostate mri in 2013. Oncology (Williston Park) 27(4), 262–70 (2013)

    Google Scholar 

  16. Sharma, N., Aggarwal, L.M.: Automated medical image segmentation techniques. J. Med. Phys./Assoc. Med. Phys. India 35(1), 3 (2010)

    Google Scholar 

  17. Li, H., Lee, C.H., Chia, D., Lin, Z., Huang, W., Tan, C.H.: Machine learning in prostate MRI for prostate cancer: current status and future opportunities. Diagnostics 12(2), 289 (2022)

    Article  Google Scholar 

  18. Klein, S., van der Heide, U.A., Raaymakers, B.W., Kotte, A.N.T.J., Staring, M., Pluim, J.P.W.: Segmentation of the prostate in mr images by atlas matching. In: 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1300–1303 (2007)

    Google Scholar 

  19. Reda, I., Elmogy, M., Aboulfotouh, A., Ismail, M., El-Baz, A., Keynton, R.: Prostate segmentation using deformable model-based methods. Biomed. Image Seg. Adv. Trends 293, 15–40 (2016)

    Google Scholar 

  20. Liu, X., Haider, M.A., Yetik, I.S.: Unsupervised 3D prostate segmentation based on diffusion-weighted imaging mri using active contour models with a shape prior. In: JECE 2011 (2011)

    Google Scholar 

  21. Comelli, A., et al.: Deep learning-based methods for prostate segmentation in magnetic resonance imaging. Appl. Sci. 11(2), 782 (2021)

    Article  Google Scholar 

  22. Shen, D., Wu, G., Suk, H.-I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19(1), 221–248 (2017). PMID: 28301734

    Article  Google Scholar 

  23. Zhu, Q., Du, B., Turkbey, B., Choyke, P.L., Yan, P.: Deeply-supervised CNN for prostate segmentation. CoRR, abs/1703.07523 (2017)

    Google Scholar 

  24. Zabihollahy, F., Schieda, N., Jeyaraj, S.K., Ukwatta, E.: Automated segmentation of prostate zonal anatomy on t2-weighted (t2w) and apparent diffusion coefficient (adc) map mr images using u-nets. Med. Phys. 46(7), 3078–3090 (2019)

    Article  Google Scholar 

  25. Clark, T., Wong, A., Haider, M., Khalvati, F.: Fully deep convolutional neural networks for segmentation of the prostate gland in diffusion-weighted mr images, pp. 97–104 (2017)

    Google Scholar 

  26. Rundo, L., et al.: Use-net: incorporating squeeze-and-excitation blocks into u-net for prostate zonal segmentation of multi-institutional MRI datasets. CoRR, abs/1904.08254 (2019)

    Google Scholar 

  27. Rundo, L., et al.: Cnn-based prostate zonal segmentation on t2-weighted MR images: a cross-dataset study. CoRR, abs/1903.12571 (2019)

    Google Scholar 

  28. Li, S., Dong, M., Guangming, D., Xiaomin, M.: Attention dense-u-net for automatic breast mass segmentation in digital mammogram. IEEE Access 7, 59037–59047 (2019)

    Article  Google Scholar 

  29. ) Guo, C., Szemenyei, M., Yi, Y., Wang, W., Chen, B., Fan, C.: Sa-unet: spatial attention u-net for retinal vessel segmentation. ArXiv, abs/2004.03696 (2020)

    Google Scholar 

  30. Bloice, M.D., Roth, P.M., Holzinger, A.: Biomedical image augmentation using Augmentor. Bioinformatics 35(21), 4522–4524 (2019)

    Article  Google Scholar 

  31. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. CoRR, abs/1802.06955 (2018)

    Google Scholar 

  32. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  33. Taha, A.-A., Hanbury, A.: Metrics for evaluating 3d medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15(1), 1–28 (2015)

    Article  Google Scholar 

  34. Yeung, M., Sala, E., Schönlieb, C.-B., Rundo, L.: Unified focal loss: generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation (2021)

    Google Scholar 

  35. Sha, Y.: Keras-unet-collection (2021). https://github.com/yingkaisha/keras-unet-collection

  36. Hyun, L.J.: Pytorch implementation of u-net, r2u-net, attention u-net, attention r2u-net (2019). https://github.com/LeeJunHyun/Image_Segmentation

Download references

Acknowledgments

The authors wish to thank the AI Hub and the CIIOT at ITESM for their support for carrying the experiments reported in this paper in their NVIDIA’s DGX computer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Cesar Quihui-Rubio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quihui-Rubio, P.C., Ochoa-Ruiz, G., Gonzalez-Mendoza, M., Rodriguez-Hernandez, G., Mata, C. (2022). Comparison of Automatic Prostate Zones Segmentation Models in MRI Images Using U-net-like Architectures. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds) Advances in Computational Intelligence. MICAI 2022. Lecture Notes in Computer Science(), vol 13612. Springer, Cham. https://doi.org/10.1007/978-3-031-19493-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19493-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19492-4

  • Online ISBN: 978-3-031-19493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics