Skip to main content

Towards Neural Network Interpretability Using Commonsense Knowledge Graphs

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2022 (ISWC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13489))

Included in the following conference series:

  • 2528 Accesses

Abstract

Convolutional neural networks (CNNs) classify images by learning intermediate representations of the input throughout many layers. In recent work, latent representations of CNNs have been aligned with semantic concepts. However, for generating such alignments, the majority of existing methods predominantly rely on large amounts of labeled data, which is hard to acquire in practice. In this work, we address this limitation by presenting a framework for mapping hidden units from CNNs to semantic attributes of classes extracted from external commonsense knowledge repositories. We empirically demonstrate the effectiveness of our framework on copy-paste adversarial image classification and generalized zero-shot learning tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Alternatively, a KG \(\mathcal {G}=(\mathcal {V}, \{\mathcal {E}_p \subseteq \mathcal {V} \times \mathcal {V}\}_{p \in \mathcal {P}})\) can be viewed as a directed super-graph (i.e. a composition of directed graphs \(\mathcal {G}_p=(\mathcal {V}, \mathcal {E}_p), \forall p \in \mathcal {P}\), where the edges are labeled by the predicates p.

  2. 2.

    We also write \(J(\mathcal {X},\mathcal {Y})\) for conciseness.

  3. 3.

    A neuron can also be understood as an element of the vector of activation output for a given layer.

  4. 4.

    We also experimented with the WebChild [27] KG, but the results for ConceptNet are more promising.

References

  1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: SIGMOD 1993, pp. 207–216 (1993)

    Google Scholar 

  2. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: CVPR, pp. 3319–3327 (2017)

    Google Scholar 

  3. Brunner, T., Diehl, F., Knoll, A.: Copy and paste: a simple but effective initialization method for black-box adversarial attacks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2019)

    Google Scholar 

  4. Chen, J., Geng, Y., Chen, Z., Horrocks, I., Pan, J.Z., Chen, H.: Knowledge-aware zero-shot learning: survey and perspective. In: IJCAI, pp. 4366–4373. ijcai.org (2021)

    Google Scholar 

  5. Cheng, X., Lu, J., Feng, J., Yuan, B., Zhou, J.: Scene recognition with objectness. Pattern Recogn. 74, 474–487 (2018)

    Article  Google Scholar 

  6. Dalvi, F., Nortonsmith, A., Bau, A., et al.: Neurox: a toolkit for analyzing individual neurons in neural networks. In: AAAI 2019, pp. 9851–9852 (2019)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L., et al.: Imagenet: a large-scale hierarchical image database. In: CVPR 2009, pp. 248–255 (2009)

    Google Scholar 

  8. Endres, D., Földiák, P.: Interpreting the neural code with formal concept analysis. In: NIPS, pp. 425–432 (2008)

    Google Scholar 

  9. Fong, R., Vedaldi, A.: Net2vec: quantifying and explaining how concepts are encoded by filters in deep neural networks. In: CVPR, pp. 8730–8738 (2018)

    Google Scholar 

  10. Geng, Y., Chen, J., Zhiquan Ye, e.: Explainable zero-shot learning via attentive graph convolutional network and KGs. SW 12 (2021)

    Google Scholar 

  11. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR 2015 (2015)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Horta, V.A.C., Mileo, A.: Towards explaining deep neural networks through graph analysis. In: DB and Expert Systems Applications, pp. 155–165 (2019)

    Google Scholar 

  14. Kampffmeyer, M., Chen, Y., Liang, X., Wang, H., Zhang, Y., Xing, E.P.: Rethinking knowledge graph propagation for zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  15. Lécué, F.: On the role of knowledge graphs in explainable AI. Semant. Web 11(1), 41–51 (2020)

    Article  Google Scholar 

  16. Mu, J., Andreas, J.: Compositional explanations of neurons. Adv. Neural Inf. Process. Syst. 33, 17153–17163 (2020)

    Google Scholar 

  17. Nayak, N.V., Bach, S.H.: Zero-shot learning with common sense knowledge graphs. CoRR abs/2006.10713 (2020)

    Google Scholar 

  18. Nguyen, A.M., Dosovitskiy, A., Jason Yosinski, e.: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Neurips 2016, pp. 3387–3395 (2016)

    Google Scholar 

  19. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 413–420 (2009). https://doi.org/10.1109/CVPR.2009.5206537

  20. Roy, A., Ghosal, D., Cambria, E., Majumder, N., Mihalcea, R., Poria, S.: Improving zero shot learning baselines with commonsense knowledge. CoRR abs/2012.06236 (2020)

    Google Scholar 

  21. Sarker, M.K., Xie, N., Doran, D., Raymer, M., Hitzler, P.: Explaining trained neural networks with semantic web technologies: first steps. In: NeSy (2017)

    Google Scholar 

  22. Selvaraju, R.R., et al.: Choose your neuron: incorporating domain knowledge through neuron-importance. In: ECCV (13), pp. 540–556 (2018)

    Google Scholar 

  23. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR 2014 (2014)

    Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR 2015 (2015)

    Google Scholar 

  25. de Sousa Ribeiro, M., Leite, J.: Aligning artificial neural networks and ontologies towards explainable AI. In: AAAI 2021, pp. 4932–4940 (2021)

    Google Scholar 

  26. Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: an open multilingual graph of general knowledge. In: AAAI 2017, pp. 4444–4451 (2017)

    Google Scholar 

  27. Tandon, N., de Melo, G., Suchanek, F.M., Weikum, G.: Webchild: harvesting and organizing commonsense knowledge from the web. In: WSDM. ACM (2014)

    Google Scholar 

  28. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning-a comprehensive evaluation. IEEE Trans. Pattern. Anal. Mach. Intell. 41(9), 2251–2265 (2019)

    Article  Google Scholar 

  29. Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A.: Object detectors emerge in deep scene cnns. In: ICLR 2015 (2015)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Volker Fischer from Bosch Center for AI for providing helpful feedback on initial versions of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youmna Ismaeil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ismaeil, Y., Stepanova, D., Tran, TK., Saranrittichai, P., Domokos, C., Blockeel, H. (2022). Towards Neural Network Interpretability Using Commonsense Knowledge Graphs. In: Sattler, U., et al. The Semantic Web – ISWC 2022. ISWC 2022. Lecture Notes in Computer Science, vol 13489. Springer, Cham. https://doi.org/10.1007/978-3-031-19433-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19433-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19432-0

  • Online ISBN: 978-3-031-19433-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics