Skip to main content

Heterogeneous Graph Neural Network with Hypernetworks for Knowledge Graph Embedding

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2022 (ISWC 2022)

Abstract

Heterogeneous graph neural network (HGNN) has drawn considerable research attention in recent years. Knowledge graphs contain hundreds of distinct relations, showing the intrinsic property of strong heterogeneity. However, the majority of HGNNs characterize the heterogeneities by learning separate parameters for different types of nodes and edges in latent space. The number of type-related parameters will be explosively increased when HGNNs attempt to process knowledge graphs, making HGNNs only applicable for graphs with fewer edge types. In this work, to overcome such limitation, we propose a novel heterogeneous graph neural network incorporated with hypernetworks that generate the required parameters by modeling the general semantics among relations. Specifically, we exploit hypernetworks to generate relation-specific parameters of a convolution-based message function to improve the model’s performance while maintaining parameter efficiency. The empirical study on the most commonly-used knowledge base embedding datasets confirms the effectiveness and efficiency of the proposed model. Furthermore, the model parameters have been shown to be significantly reduced (from 415M to 3M on FB15k-237 and from 13M to 4M on WN18RR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/otiliastr/coper.

  2. 2.

    https://github.com/malllabiisc/CompGCN.

  3. 3.

    https://github.com/liuxiyang641/HKGN.

References

  1. Balažević, I., Allen, C., Hospedales, T.M.: Hypernetwork knowledge graph embeddings. In: Proceedings of the ICANN, Munich, Germany, pp. 553–565 (2019). https://doi.org/10.1007/978-3-030-30493-5_52

  2. Bansal, T., Juan, D.C., Ravi, S., McCallum, A.: A2N: attending to neighbors for knowledge graph inference. In: Proceedings of the ACL, Florence, Italy, pp. 4387–4392 (2019). https://doi.org/10.18653/v1/P19-1431

  3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the SIGMOD, Vancouver, BC, Canada, pp. 1247–1250 (2008). https://doi.org/10.1145/1376616.1376746

  4. Bordes, A., Chopra, S., Weston, J.: Question answering with subgraph embeddings. In: Proceedings of the EMNLP, Doha, Qatar, pp. 615–620 (2014). https://doi.org/10.3115/v1/D14-1067

  5. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings of the NIPS, Lake Tahoe, Nevada, United States, pp. 2787–2795 (2013)

    Google Scholar 

  6. Cao, Z., Xu, Q., Yang, Z., Cao, X., Huang, Q.: Dual quaternion knowledge graph embeddings. In: Proceedings of the AAAI, pp. 6894–6902 (2021)

    Google Scholar 

  7. Das, R., et al.: Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning. In: Proceedings of the ICLR, Vancouver, BC, Canada (2018)

    Google Scholar 

  8. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proceedings of the AAAI, New Orleans, Louisiana, USA, pp. 1811–1818 (2018). https://doi.org/10.1609/aaai.v32i1.11573

  9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the NAACL-HIT, Minneapolis, Minnesota, pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423

  10. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of the SIGKDD, New York, NY, USA, pp. 601–610 (2014). https://doi.org/10.1145/2623330.2623623

  11. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpedia, freebase, OpenCyc, Wikidata, and YAGO. Semant. Web 9(1), 77–129 (2018). https://doi.org/10.3233/SW-170275

    Article  Google Scholar 

  12. Fu, X., Zhang, J., Meng, Z., King, I.: MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding. In: Proceedings of the WWW, New York, NY, USA, pp. 2331–2341 (2020). https://doi.org/10.1145/3366423.3380297

  13. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proceedings of the ICML, ICML 2017, pp. 1263–1272. JMLR.org (2017)

    Google Scholar 

  14. Guo, L., Sun, Z., Hu, W.: Learning to exploit long-term relational dependencies in knowledge graphs. In: Proceedings of the ICML, Long Beach, California, USA, vol. 97, pp. 2505–2514 (2019)

    Google Scholar 

  15. Ha, D., Dai, A., Le, Q.V.: Hypernetworks. In: Proceedings of the ICLR, Toulon, France (2017)

    Google Scholar 

  16. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the NIPS, pp. 1025–1035. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR, Las Vegas, NV, USA, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  18. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In: Proceedings of the Web Conference 2020, New York, NY, USA, pp. 2704–2710 (2020). https://doi.org/10.1145/3366423.3380027

  19. Huang, Z., Li, X., Ye, Y., Ng, M.K.: MR-GCN: multi-relational graph convolutional networks based on generalized tensor product. In: Proceedings of the IJCAI, pp. 1258–1264 (2020). https://doi.org/10.24963/ijcai.2020/175

  20. Jia, C., Shen, Y., Tang, Y., Sun, L., Lu, W.: Heterogeneous graph neural networks for concept prerequisite relation learning in educational data. In: Proceedings of the NAACL-HIT, pp. 2036–2047 (2021). https://doi.org/10.18653/v1/2021.naacl-main.164

  21. Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: Proceedings of the NIPS, Red Hook, NY, USA, vol. 29 (2016)

    Google Scholar 

  22. Jiang, X., Wang, Q., Wang, B.: Adaptive convolution for multi-relational learning. In: Proceedings of the NAACL-HIT, Minneapolis, Minnesota, pp. 978–987 (2019). https://doi.org/10.18653/v1/N19-1103

  23. Jin, D., Huo, C., Liang, C., Yang, L.: Heterogeneous graph neural network via attribute completion. In: Proceedings of the Web Conference 2021, pp. 391–400. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3442381.3449914

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the ICLR, San Diego, CA, USA (2015)

    Google Scholar 

  25. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the ICLR, Toulon, France (2017)

    Google Scholar 

  26. Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015). https://doi.org/10.3233/SW-140134

    Article  Google Scholar 

  27. Li, Z., Liu, H., Zhang, Z., Liu, T., Xiong, N.N.: Learning knowledge graph embedding with heterogeneous relation attention networks. IEEE Trans. Neural Netw. Learn. Syst. 1–13 (2021). https://doi.org/10.1109/TNNLS.2021.3055147

  28. Liu, Z., Fang, Y., Liu, C., Hoi, S.C.H.: Node-wise localization of graph neural networks. In: Proceedings of the IJCAI, Montreal, Canada, pp. 1520–1526 (2021). https://doi.org/10.24963/ijcai.2021/210

  29. Ma, Y., Crook, P.A., Sarikaya, R., Fosler-Lussier, E.: Knowledge graph inference for spoken dialog systems. In: Proceedings of the ICASSP, South Brisbane, Queensland, Australia, pp. 5346–5350 (2015). https://doi.org/10.1109/ICASSP.2015.7178992

  30. Nachmani, E., Wolf, L.: Hyper-graph-network decoders for block codes. In: Proceedings of the NIPS, Vancouver, BC, Canada, pp. 2326–2336 (2019)

    Google Scholar 

  31. Nachmani, E., Wolf, L.: Molecule property prediction and classification with graph hypernetworks. Computing Research Repository arXiv:2002.00240 (2020)

  32. Nathani, D., Chauhan, J., Sharma, C., Kaul, M.: Learning attention-based embeddings for relation prediction in knowledge graphs. In: Proceedings of the ACL, pp. 4710–4723. Florence, Italy (2019). https://doi.org/10.18653/v1/P19-1466

  33. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: Proceedings of the NAACL-HIT, New Orleans, Louisiana, pp. 327–333 (2018). https://doi.org/10.18653/v1/N18-2053

  34. Nguyen, D.Q., Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A capsule network-based embedding model for knowledge graph completion and search personalization. In: Proceedings of the NAACL-HIT, Minneapolis, Minnesota, pp. 2180–2189 (2019). https://doi.org/10.18653/v1/N19-1226

  35. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: Proceedings of the ICML, Bellevue, Washington, USA, pp. 809–816 (2011)

    Google Scholar 

  36. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Proceedings of the NIPS, Vancouver, BC, Canada, pp. 8024–8035 (2019)

    Google Scholar 

  37. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  38. Riegler, G., Schulter, S., Rüther, M., Bischof, H.: Conditioned regression models for non-blind single image super-resolution. In: Proceedings of the ICCV, Santiago, Chile, pp. 522–530 (2015). https://doi.org/10.1109/ICCV.2015.67

  39. Ruffinelli, D., Broscheit, S., Gemulla, R.: You can teach an old dog new tricks! on training knowledge graph embeddings. In: Proceedings of the ICLR, Addis Ababa, Ethiopia (2020)

    Google Scholar 

  40. Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Proceedings of the ESWC, Heraklion, Crete, Greece, vol. 10843, pp. 593–607 (2018). https://doi.org/10.1007/978-3-319-93417-4_38

  41. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-aware convolutional networks for knowledge base completion. In: Proceedings of the AAAI, Honolulu, Hawaii, USA, vol. 33, pp. 3060–3067 (2019). https://doi.org/10.1609/aaai.v33i01.33013060

  42. Stoica, G., Stretcu, O., Platanios, E.A., Mitchell, T.M., Póczos, B.: Contextual parameter generation for knowledge graph link prediction. In: Proceedings of the AAAI, New York, NY, USA, pp. 3000–3008 (2020). https://doi.org/10.1609/aaai.v34i03.5693

  43. Sun, Z., Vashishth, S., Sanyal, S., Talukdar, P., Yang, Y.: A re-evaluation of knowledge graph completion methods. In: Proceedings of the ACL, pp. 5516–5522 (2020). https://doi.org/10.18653/v1/2020.acl-main.489

  44. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on CVSC, Beijing, China, pp. 57–66 (2015). https://doi.org/10.18653/v1/W15-4007

  45. Vashishth, S., Sanyal, S., Nitin, V., Agrawal, N., Talukdar, P.P.: Interacte: improving convolution-based knowledge graph embeddings by increasing feature interactions. In: Proceedings of the AAAI, New York, NK, USA, pp. 3009–3016 (2020). https://doi.org/10.1609/aaai.v34i03.5694

  46. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational graph convolutional networks. In: Proceedings of the ICLR, Addis Ababa, Ethiopia (2020)

    Google Scholar 

  47. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the ICLR, Vancouver, BC, Canada (2018)

    Google Scholar 

  48. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  49. Wang, P., Agarwal, K., Ham, C., Choudhury, S., Reddy, C.K.: Self-supervised learning of contextual embeddings for link prediction in heterogeneous networks. In: Leskovec, J., Grobelnik, M., Najork, M., Tang, J., Zia, L. (eds.) Proceedings of the Web Conference 2021, pp. 2946–2957. ACM/IW3C2, Virtual Event (2021). https://doi.org/10.1145/3442381.3450060

  50. Wang, X., et al.: Heterogeneous graph attention network. In: Proceedings of the WWW, San Francisco, CA, USA, pp. 2022–2032 (2019). https://doi.org/10.1145/3308558.3313562

  51. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI, Québec City, Québec, Canada, pp. 1112–1119 (2014). https://doi.org/10.1609/aaai.v28i1.8870

  52. Xie, Z., Zhou, G., Liu, J., Huang, J.X.: ReInceptionE: relation-aware inception network with joint local-global structural information for knowledge graph embedding. In: Proceedings of the ACL, pp. 5929–5939 (2020). https://doi.org/10.18653/v1/2020.acl-main.526

  53. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the ICLR, San Diego, CA, USA (2015)

    Google Scholar 

  54. Ye, R., Li, X., Fang, Y., Zang, H., Wang, M.: A vectorized relational graph convolutional network for multi-relational network alignment. In: Proceedings of the IJCAI, Macao, China, pp. 4135–4141 (2019). https://doi.org/10.24963/ijcai.2019/574

  55. Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heterogeneous graph neural network. In: Proceedings of the SIGKDD, New York, NY, USA, pp. 793–803 (2019). https://doi.org/10.1145/3292500.3330961

  56. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: Proceedings of the SIGKDD, New York, NY, USA, pp. 353–362 (2016). https://doi.org/10.1145/2939672.2939673

  57. Zhao, J., Wang, X., Shi, C., Hu, B., Song, G., Ye, Y.: Heterogeneous graph structure learning for graph neural networks. In: Proceedings of the AAAI, pp. 4697–4705. AAAI Press (2021)

    Google Scholar 

  58. Zhu, J.-Z., Jia, Y.-T., Xu, J., Qiao, J.-Z., Cheng, X.-Q.: Modeling the correlations of relations for knowledge graph embedding. J. Comput. Sci. Technol. 33(2), 323–334 (2018). https://doi.org/10.1007/s11390-018-1821-8

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant 2021YFB3500700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huobin Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Zhu, T., Tan, H., Zhang, R. (2022). Heterogeneous Graph Neural Network with Hypernetworks for Knowledge Graph Embedding. In: Sattler, U., et al. The Semantic Web – ISWC 2022. ISWC 2022. Lecture Notes in Computer Science, vol 13489. Springer, Cham. https://doi.org/10.1007/978-3-031-19433-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19433-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19432-0

  • Online ISBN: 978-3-031-19433-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics