Skip to main content

The Role of ‘Unmanned Aerial Vehicles’ in Smart City Planning and Management

  • Conference paper
  • First Online:
Proceedings of UASG 2021: Wings 4 Sustainability (UASG 2021)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 304))

Included in the following conference series:

  • 368 Accesses

Abstract

A massive wave of urbanisation has grasped both developed and developing nations in the last decade. Various studies showcase the rising trend of rapid urbanisation growth due to demographic shifts, catalysed by numerous global and local parameters. India is professed to house 50 percent of its population in urban areas by 2030. The urban citizen’s rising expectations regarding infrastructure, amenities and safety will dovetail with this phenomenon. To cater to the demands of increased urbanisation, the concept of Smart cities is being advocated as an apt solution. Even so, there is widespread ambiguity about the challenges associated with adopting smart solutions into the existing urban social form. Though there have been many tentative explanations regarding the basic framework of a smart city, there are no known validated definitions. The main notable feature is the use of information and communication technologies (ICTs) within the cyclic dynamics of a city to facilitate the smooth and cost-effective working of urban areas. This ICT infrastructure enables real-time data collection, analysis, response, and storage. This has been deemed beneficial due to the increase in efficiency of operation and management services involved with the day-to-day functioning of any urban area. Smart cities advocate using information and communication technologies (ICTs) within the dynamics of a city to enable the real-time collection, analysis, and storage of big data. This is beneficial due to the increased efficiency of operation and management services involved with an urban area’s daily functioning. One such technological intervention is the ‘drone’ or the ‘unmanned aerial vehicles (UAVs)’. UAVs have a wide variety of uses in a smart urban fabric, from geospatial integration to traffic management, surveillance, disaster response, etc. In the current nascent stage of research and development of UAVs as one of the innovative solutions for smart cities in India, questions arise regarding privacy, cost of production, technical knowledge, safety and security with their large-scale use. This paper aims to assess the applicability of UAVs in overall smart city planning and management. The feasibility analysis method is adopted to analyse the felicitousness of UAVs in a smart city’s planning and design phases. The results of the study undertaken in this paper highlight the challenges and opportunities in the planning and management of smart cities by integrating UAVs. The paper enumerates the relevance and appropriate benefits of using UAVs to plan, design, and perpetuate Indian smart cities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tipton CW, Hoffman RC, Robertson DN, Godfrey RP, Friessnegg T, Ramesh R, Engineering G (2001) Unmanned aerial vehicle roadmap 2000–2025

    Google Scholar 

  2. Mohammed F, Idries A, Mohamed N, Al-Jaroodi J, Jawhar I (2014). Opportunities and challenges of using UAVs for Dubai Smart City. In: 2014 6th international conference on new technologies, mobility and security - proceedings of NTMS 2014 conference and workshops, pp 1–4. https://doi.org/10.1109/NTMS.2014.6814041

  3. Santagata E, Baglieri O, Dalmazzo D, Tsantilis L (2013) A cloud robotics architecture for an emergency management and monitoring service in a smart city environment. Mater Struct 46(10):1673–1682. https://doi.org/10.1617/s11527-012-0006-0

    Article  Google Scholar 

  4. Singh CH, Mishra V, Jain K, Shukla AK (2022) FRCNN-Based Reinforcement Learning for Real-Time Vehicle Detection Tracking and Geolocation from UAS. Drones 6(12):406. https://doi.org/10.3390/drones6120406

  5. Mohammed F, Idries A, Mohamed N, Al-Jaroodi J, Jawhar I (2014). UAVs for smart cities: opportunities and challenges. In: 2014 international conference on unmanned aircraft systems, ICUAS 2014 - conference proceedings, pp 267–273. https://doi.org/10.1109/ICUAS.2014.6842265

  6. Gallacher D (2016) Drones to manage the urban environment: risks, rewards, alternatives. J Unmanned Veh Syst 4(2):115–124. https://doi.org/10.1139/juvs-2015-0040

    Article  Google Scholar 

  7. Rash C, LeDuc P, Manning S (2006) Human factors in U.S. military unmanned aerial vehicle accidents. In: Human factors of remotely operated vehicles. Elsevier, pp 117–131. https://doi.org/10.1016/S1479-3601(05)07009-8

  8. Marris E (2013) Drones in science: fly, and bring me data. Nature 498(7453):156–158. https://doi.org/10.1038/498156a

    Article  Google Scholar 

  9. Morrison A, Tronstad R, Martinussen ES (2013) Design notes on a lonely drone. Digit Creat 24(1):46–59. https://doi.org/10.1080/14626268.2013.768534

    Article  Google Scholar 

  10. Foina AG, Sengupta R, Lerchi P, Liu Z, Krainer C (2015) Drones in smart cities: Overcoming barriers through air traffic control research. In: 2015 workshop on research, education and development of unmanned aerial systems (RED-UAS). IEEE, pp 351–359. https://doi.org/10.1109/RED-UAS.2015.7441027

  11. Giyenko A, Cho YI (2016) Intelligent unmanned aerial vehicle platform for smart cities. In:Proceedings - 2016 joint 8th international conference on soft computing and intelligent systems and 2016 17th international symposium on advanced intelligent systems, SCIS-ISIS 2016, pp 729–733. https://doi.org/10.1109/SCIS-ISIS.2016.0159

  12. Jensen OB (2016) Drone city - power, design and aerial mobility in the age of “smart cities.” Geogr Helv 71(2):67–75. https://doi.org/10.5194/gh-71-67-2016

    Article  Google Scholar 

  13. Shariat A, Tizghadam A, Leon-Garcia A (2016) An ICN-based publish-subscribe platform to deliver UAV service in smart cities. In: Proceedings - IEEE INFOCOM, 2016-Septe, pp 698–703. https://doi.org/10.1109/INFCOMW.2016.7562167

  14. Stevenson JD, O’Young S, Rolland L (2015) Estimated levels of safety for small unmanned aerial vehicles and risk mitigation strategies. J Unmanned Veh Syst 3(4):205–221. https://doi.org/10.1139/juvs-2014-0016

    Article  Google Scholar 

  15. Sundar K, Rathinam S (2014) Algorithms for routing an unmanned aerial vehicle in the presence of refueling depots. IEEE Trans Autom Sci Eng 11(1):287–294. https://doi.org/10.1109/TASE.2013.2279544

    Article  Google Scholar 

  16. Winter SR, Rice S, Tamilselvan G, Tokarski R (2016) Mission-based citizen views on UAV usage and privacy: an affective perspective. J Unmanned Veh Syst 4(2):125–135. https://doi.org/10.1139/juvs-2015-0031

    Article  Google Scholar 

  17. Sterbenz JPG (2016) Drones in the smart city and IoT: protocols, resilience, benefits, and risks. In: Proceedings of the 2nd workshop on micro aerial vehicle networks, systems, and applications for civilian use - DroNet ’16. : ACM Press, New York, USA, pp. 3–3. https://doi.org/10.1145/2935620.2949659

  18. Vattapparamban E, Guvenc I, Yurekli AI, Akkaya K, Uluagac S (2016) Drones for smart cities: issues in cybersecurity, privacy, and public safety. Int Wirel Commun Mob Comput Conf (IWCMC) 2016:216–221. https://doi.org/10.1109/IWCMC.2016.7577060

    Article  Google Scholar 

  19. Aldaej A, Ahanger TA, Atiquzzaman M, Ullah I, Yousufudin M (2022) Smart cybersecurity framework for IoT-empowered drones: machine learning perspective. Sensors 22(7). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127120421&doi=10.3390%2Fs22072630&partnerID=40&md5=9bac316c9d0b84037bb490de1bc9bfb2

  20. Baig Z, Syed N, Mohammad N (2022) Securing the smart city airspace: drone cyber attack detection through machine learning. Future Internet 14(7). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133522893&doi=10.3390%2Ffi14070205&partnerID=40&md5=ef36d03bd9cdbd6220269bce9d7e8c7a

  21. Baig, ZA, Szewczyk P, Valli C, Rabadia P, Hannay P, Chernyshev M, Peacock M (2017) Future challenges for smart cities: Cyber-security and digital forensics. Digit Investig 22:3–13. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027456918&doi=10.1016%2Fj.diin.2017.06.015&partnerID=40&md5=f7de9669ecaf8157d15d0b5602acce85

  22. Baig ZA, Szewczyk P, Valli C, Rabadia P, Hannay P, Chernyshev M, Peacock M (2017) Future challenges for smart cities: cyber-security and digital forensics. Digit Investig 22:3–13. https://doi.org/10.1016/J.DIIN.2017.06.015

    Article  Google Scholar 

  23. Akram MW, Bashir AK, Shamshad S, Saleem MA, AlZubi AA, Chaudhry SA, Zikria YB (2021) A secure and lightweight drones-access protocol for smart city surveillance. IEEE Trans Intell Transp Syst. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121397641&doi=10.1109%2FTITS.2021.3129913&partnerID=40&md5=e82e6cc6f023492302cb42c3be5ea438

  24. Gohari A, Ahmad AB, Rahim RBA, Supa’at ASM, Razak SA, Gismalla MSM (2022) Involvement of surveillance drones in smart cities: a systematic review. IEEE Access 10:56611–56628. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130784183&doi=10.1109%2FACCESS.2022.3177904&partnerID=40&md5=cf528fb347a5e3fd3c8ef4faa6799910

  25. Jin Y, Qian Z, Yang W (2020) UAV cluster-based video surveillance system optimisation in heterogeneous communication of smart cities. IEEE Access 8:55654–55664. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082598151&doi=10.1109%2FACCESS.2020.2981647&partnerID=40&md5=fe107241b8e3d3118bbdc184e9a27051

  26. Kim H, Ben-Othman J (2018) A collision-free surveillance system using smart UAVs in multi domain IoT. IEEE Commun Lett 22(12):2587–2590. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054621440&doi=10.1109%2FLCOMM.2018.2875477&partnerID=40&md5=ab514d6e42be3c92e6235e2f10da8e1b

  27. Kim H, Mokdad L, Ben-Othman J (2018) Designing UAV surveillance frameworks for smart city and extensive ocean with differential perspectives. IEEE Commun Mag 56(4):98–104. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045921660&doi=10.1109%2FMCOM.2018.1700444&partnerID=40&md5=91f6a796739259ff049bca8b7ebed622

  28. Nikooghadam M, Amintoosi H, Islam SH, Moghadam MF (2021) A provably secure and lightweight authentication scheme for Internet of Drones for smart city surveillance. J Syst Arch 115. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097800036&doi=10.1016%2Fj.sysarc.2020.101955&partnerID=40&md5=cbc0a00bbbaaa89502edf19f84438393

  29. Li J, Yao YX, Duan P, Chen Y, Li S, Zhang C (2018) Studies on three-dimensional (3D) modeling of UAV oblique imagery with the aid of loop-shooting. ISPRS Int J Geo-Inf 7(9).

    Google Scholar 

  30. Shirowzhan S, Tan W, Sepasgozar SME (2020) Digital twin and CyberGIS for improving connectivity and measuring the impact of infrastructure construction planning in smart cities. ISPRS Int J Geo-Inf 9(4). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083321923&doi=10.3390%2Fijgi9040240&partnerID=40&md5=ef3d9bdc2455373d422e38881a5d13b4

  31. Beg A, Qureshi AR, Sheltami T, Yasar A (2021) UAV-enabled intelligent traffic policing and emergency response handling system for the smart city. Pers Ubiquitous Comput 25(1):33–50. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85080857116&doi=10.1007%2Fs00779-019-01297-y&partnerID=40&md5=59cdc91296802515e0997c44e07ecfdd

  32. Jain A, Ramaprasad R, Narang P, Mandal M, Chamola V, Yu FR, Guizan M (2021) AI-enabled object detection in UAVs: challenges, design choices, and research directions. IEEE Netw 35(4):129–135

    Article  Google Scholar 

  33. Khan NA, Jhanjhi NZ, Brohi SN, Usmani RSA, Nayyar A (2020) Smart traffic monitoring system using Unmanned Aerial Vehicles (UAVs). Comput Commun 157:434–443. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083820120&doi=10.1016%2Fj.comcom.2020.04.049&partnerID=40&md5=9ade9565cd7c289ebc704ef93a7ee5c6

  34. Mohamed N, Al-Jaroodi J, Jawhar I, Idries A, Mohammed F (2020) Unmanned aerial vehicles applications in future smart cities. Technol Forecast Soc Chang 153.

    Google Scholar 

  35. Su JH, Liao JJ, Gu DJ, Wang ZY, Cai GR (2021) Object detection in aerial images using a multiscale keypoint detection network. IEEE J Sel Top Appl Earth Obs Remote Sens 14:1389–1398

    Article  Google Scholar 

  36. Munawar HS, Ullah F, Qayyum S, Khan SI, Mojtahedi M (2021) UAVs in disaster management: application of integrated aerial imagery and convolutional neural network for flood detection. Sustainability 13(14).

    Google Scholar 

  37. Sharma A, Singh PK, Kumar Y (2020) An integrated fire detection system using IoT and image processing technique for smart cities. Sustain Cities Soc 61. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086804177&doi=10.1016%2Fj.scs.2020.102332&partnerID=40&md5=686ecd3bcfd4c089f01e5392174c400d

  38. Xiao J, Zhu R, Hu RM, Wang M, Zhu Y, Chen D, Li DR (2018) Towards real-time service from remote sensing: compression of earth observatory video data via long-term background referencing. Remote Sens 10(6).

    Google Scholar 

  39. Bourbakis N, Ktistakis IP, Seleem T (2020) Smart cities-detecting humans in regions of disasters: synergy of drones, micro-robots in underground tunnels. Int J Artif Intell Tools 29(5). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092435805&doi=10.1142%2FS0218213020500062&partnerID=40&md5=f63bdac942cccaa737429a543efd389b

  40. Huynh DV, Do-Duy T, Nguyen LD, Le MT, Vo NS, Duong TQ (2022) Real-time optimized path planning and energy consumption for data collection in unmanned ariel vehicles-aided intelligent wireless sensing. IEEE Trans Ind Inform 18(4):2753–2761

    Google Scholar 

  41. Qadir Z, Ullah F, Munawar HS, Al-Turjman F (2021) Addressing disasters in smart cities through UAVs path planning and 5G communications: a systematic review. Comput Commun 168:114–135. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099627653&doi=10.1016%2Fj.comcom.2021.01.003&partnerID=40&md5=f9eacf96073df0591f3487d7fcac9bca

  42. Saha S, Vasegaard AE, Nielsen I, Hapka A, Budzisz H (2021) UAVs path planning under a Bi-objective optimisation framework for smart cities. Electronics 10(10).

    Google Scholar 

  43. Sood SK (2020) Fog-Cloud centric IoT-based cyber physical framework for panic oriented disaster evacuation in smart cities. Earth Sci Inform.

    Google Scholar 

  44. Doraswamy B, Krishna KL, Giriprasad MN (2022) A secure unmanned aerial vehicle service for medical system to improve smart city facilities. Int J Adv Comput Sci Appl 13(2):495–504. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126135187&doi=10.14569%2FIJACSA.2022.0130258&partnerID=40&md5=19dd0d412f4b3832faefe1bb7c40ee4e

  45. Khosravi MR, Samadi S (2021) BL-ALM: A blind scalable edge-guided reconstruction filter for smart environmental monitoring through green IoMT-UAV networks. IEEE Trans Green Commun Netw 5(2):727–736. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103298646&doi=10.1109%2FTGCN.2021.3067555&partnerID=40&md5=171acd8e1fd16f36067006748bbc0776

  46. Sharma R, Arya R (2022) UAV based long range environment monitoring system with Industry 5.0 perspectives for smart city infrastructure. Comput Ind Eng 168. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126070588&doi=10.1016%2Fj.cie.2022.108066&partnerID=40&md5=c3a339a0a79235e35219061a5f6c19d9

  47. Asaamoning G, Mendes P, Magaia N (2021) A Dynamic clustering mechanism with load-balancing for flying Ad Hoc networks. IEEE ACCESS 9:158574–158586

    Article  Google Scholar 

  48. Bouassida S, Neji N, Nouveliere L, Neji J (2021) Evaluating the impact of drone signaling in crosswalk scenario. Appl Sci-Basel 11(1).

    Google Scholar 

  49. Ren X, Vashisht S, Aujla GS, Zhang P (2022) Drone-edge coalesce for energy-aware and sustainable service delivery for smart city applications. Sustain Cities Soc 77. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119918251&doi=10.1016%2Fj.scs.2021.103505&partnerID=40&md5=ba382df9392ae0bc1db6a5c0c838d3b3

  50. Shao B, Leeson MS (2021) PaFiR: Particle Filter Routing - a predictive relaying scheme for UAV-assisted IoT communications in future innovated networks. Internet Things 14.

    Google Scholar 

  51. Tiwari A, Sharma SK, Dixit A, Mishra V (2021) UAV remote sensing for campus monitoring: a comparative evaluation of nearest neighbor and rule-based classification. J Indian Soc Remote Sens 49(3):527–539

    Article  Google Scholar 

  52. Alqurashi FA, Alsolami F, Abdel-Khalek S, Sayed Ali E, Saeed RA (2022) Machine learning techniques in internet of UAVs for smart cities applications. Journal of Intelligent and Fuzzy Systems, 42(4), 3203–3226. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127451313&doi=10.3233%2FJIFS-211009&partnerID=40&md5=9b3151d4c91fe7fa277148dbe338c722

  53. Malekloo A, Ozer E, AlHamaydeh M, Girolami M (2022) Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights. Struct Health Monit-An Int J 21(4):1906–1955

    Article  Google Scholar 

  54. Alsamhi SH, Almalki FA, AL-Dois H, Shvetsov A V, Ansari MS, Hawbani A, … Lee B (2021) Multi-Drone Edge Intelligence and SAR Smart Wearable Devices for Emergency Communication. Wireless Communications and Mobile Computing, 2021. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122984823&doi=10.1155%2F2021%2F6710074&partnerID=40&md5=28bd732ee665e4b76005ea80b1cbaf55

  55. Garg S, Singh A, Batra S, Kumar N, Yang LT (2018) UAV-empowered edge computing environment for cyber-threat detection in smart vehicles. IEEE Netw 32(3):42–51. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048335823&doi=10.1109%2FMNET.2018.1700286&partnerID=40&md5=ac7585fdceaa29e9ae06b26c0362cd8b

  56. Hu L, Liu A, Xie M, Wang T (2019) UAVs joint vehicles as data mules for fast codes dissemination for edge networking in Smart City. Peer-To-Peer Netw Appl 12(6):1550–1574. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066617886&doi=10.1007%2Fs12083-019-00752-0&partnerID=40&md5=2c7c45e9d24b81667bce942164608c74

  57. Hu Z, Bai Z, Yang Y, Zheng Z, Bian K, Song L (2019) UAV aided aerial-ground IoT for air quality sensing in smart city: architecture, technologies, and implementation. IEEE Netw 33(2):14–22. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063768947&doi=10.1109%2FMNET.2019.1800214&partnerID=40&md5=bd613b22c3d239d7f47d4fd27251337a

  58. Tan Z, Qu H, Zhao J, Zhou S, Wang W (2020) UAV-aided edge/fog computing in smart IoT community for social augmented reality. IEEE Internet Things J 7(6):4872–4884. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086584724&doi=10.1109%2FJIOT.2020.2971325&partnerID=40&md5=7c41ab954554666331b2bf8baa6154a8

  59. Darsena D, Gelli G, Iudice I, Verde F (2021) Detection and blind channel estimation for UAV-aided wireless sensor networks in smart cities under mobile jamming attack. IEEE Internet Things J. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120899774&doi=10.1109%2FJIOT.2021.3132381&partnerID=40&md5=35280edc6928588cec10c0b3c057663c

  60. Khalifeh A, Darabkh KA, Khasawneh AM, Alqaisieh I, Salameh M, Alabdala A, Rajendiran K (2021) Wireless sensor networks for smart cities: network design, implementation and performance evaluation. Electronics (Switzerland) 10(2):1–28. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100109661&doi=10.3390%2Felectronics10020218&partnerID=40&md5=afe7e7350b9255538a3e31e4fb0d1b2c

  61. Liu J, Liu Z, Zhang H, Yuan H, Manokaran KB, Maheshwari M (2021) Multi-sensor information fusion for IoT in automated guided vehicle in smart city. Soft Comput 25(18), 12017–12029. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102235589&doi=10.1007%2Fs00500-021-05696-3&partnerID=40&md5=a688b61e78a9f39de867cde9d4eca51f

  62. Deebak BD, Al-Turjman F (2020) A smart lightweight privacy preservation scheme for IoT-based UAV communication systems. Comput Commun 162:102–117. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090056135&doi=10.1016%2Fj.comcom.2020.08.016&partnerID=40&md5=8e0e7873df03d2d3e99cf351086e8cbc

  63. Hoque MA, Hossain M, Noor S, Islam SMR, Hasan R (2021) IoTaaS: drone based intrenet of things as a service framework for smart cities. IEEE Internet Things J. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122576054&doi=10.1109%2FJIOT.2021.3137362&partnerID=40&md5=3f1aa21fcc7ebd04f6160e50ca3030cf

  64. Qi F, Zhu X, Mang G, Kadoch M, Li W (2019) UAV network and IoT in the sky for future smart cities. IEEE Netw 33(2):96–101. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063769486&doi=10.1109%2FMNET.2019.1800250&partnerID=40&md5=36422722ddc9036c8c2b61828117c239

  65. Zahmatkesh H, Al-Turjman F (2020) Fog computing for sustainable smart cities in the IoT era: caching techniques and enabling technologies - an overview. Sustain Cities Soc, 59. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084182624&doi=10.1016%2Fj.scs.2020.102139&partnerID=40&md5=8041a8e993b33b4aa3f18f859f82ee36

  66. Ermacora G, Rosa S, Toma A (2016) Fly4SmartCity: a cloud robotics service for smart city applications. J Ambient Intell Smart Environ 8(3):347–358. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84968779361&doi=10.3233%2FAIS-160374&partnerID=40&md5=4e7a6dee1043d83d5e28ff3ee4a813d6

  67. Mehranfar M, Arefi H, Alidoost F (2021) Knowledge-based 3D reconstruction of bridge structures using UAV-based photogrammetric point cloud. J Appl Remote Sens 15(4).

    Google Scholar 

  68. Ramaprasad A, Aurora Sánchez-Ortiz TS (2007) A Unified Definition of a Smart City. Encyclopedia of Digital Government 1:634–642. https://doi.org/10.1007/978-3-540-74444-3

    Article  Google Scholar 

  69. Ministry of Urban Development Government of India (2015) Smart city mission statement & guidelines. Routledge. https://doi.org/10.4324/9780203076224

    Article  Google Scholar 

  70. Kumar H, Singh MK, Gupta MP, Madaan J (2018) Moving towards smart cities: solutions that lead to the smart city transformation framework. In: Technological forecasting and social change, (April), pp 1–16. https://doi.org/10.1016/j.techfore.2018.04.024

  71. Bhattacharya S, Rathi S (2015) Reconceptualising smart cities: a reference framework for India

    Google Scholar 

  72. Jensen OB (2016) New ‘foucauldian boomerangs’: drones and urban surveillance. Surveill Soc 14(1):20–33

    Article  Google Scholar 

  73. Sharma V, You I, Pau G, Collotta M, Lim JD, Kim JN (2018) LoRaWAN-based energy-efficient surveillance by drones for intelligent transportation systems. Energies 11(3). https://doi.org/10.3390/en11030573

  74. Renwick JD, Klein LJ, Hamann HF (2017) Drone-based reconstruction for 3D geospatial data processing. In: 2016 IEEE 3rd world forum on internet of things. WF-IoT 2016, pp 729–734. https://doi.org/10.1109/WF-IoT.2016.7845501

  75. Koubaa A, Qureshi B, Sriti MF, Javed Y, Tovar E (2017) A service-oriented Cloud-based management system for the Internet-of-Drones. In: 2017 IEEE international conference on autonomous robot systems and competitions, ICARSC 2017, (Section 3), pp 329–335. https://doi.org/10.1109/ICARSC.2017.7964096

  76. Fotouhi A, Ding M, Hassan M (2017) Understanding autonomous drone maneuverability for Internet of Things applications. In: 18th IEEE international symposium on a world of wireless, mobile and multimedia networks, WoWMoM 2017 - conference, pp 1–6. https://doi.org/10.1109/WoWMoM.2017.7974336

  77. Du R, Santi P, Xiao M, Vasilakos A V, Fischione C (2019) The sensable city: a survey on the deployment and management for smart city monitoring. IEEE Commun Surv Tutor 21(2):1533–1560. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056584676&doi=10.1109%2FCOMST.2018.2881008&partnerID=40&md5=d118dacc0e60339c1c39958c803fdd74

  78. Alsamhi SH, Ma O, Ansari MS, Almalki FA (2019) Survey on collaborative smart drones and internet of things for improving smartness of smart cities. IEEE Access, 7, 128125–128152. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075391498&doi=10.1109%2FACCESS.2019.2934998&partnerID=40&md5=b924be44c58864e9758231a1c7bf3ae5

  79. Zakaria NA, Zainal Z, Harum N, Chen L, Saleh N, Azni F (2018) Wireless internet of things-based air quality device for smart pollution monitoring. Int J Adv Comput Sci Appl, 9(11), 65–69. https://doi.org/10.14569/IJACSA.2018.091110

  80. Nasution TH, Muchtar MA, Simon A (2019) Designing an IoT-based air quality monitoring system. In: IOP conference series: materials science and engineering, vol 648, p 012037). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/648/1/012037

  81. Hernández-Vega JI, Varela ER, Romero NH, Hernández-Santos C, Cuevas JLS, Gorham DGP (2018) Internet of things (IoT) for monitoring air pollutants with an unmanned aerial vehicle (UAV) in a smart city. In: Lecture notes of the institute for computer sciences, social-informatics and telecommunications engineering, LNICST. Springer, vol 213, pp 108–120. https://doi.org/10.1007/978-3-319-73323-4_11

  82. Rohi G, Ejofodomi O, Ofualagba G (2020) Autonomous monitoring, analysis, and countering of air pollution using environmental drones. Heliyon 6(1):e03252. https://doi.org/10.1016/j.heliyon.2020.e03252

    Article  Google Scholar 

  83. Nguyen DD, Rohacs J, Rohacs D (2021) Autonomous flight trajectory control system for drones in smart city traffic management. ISPRS Int J Geo-Inf 10(5). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107233327&doi=10.3390%2Fijgi10050338&partnerID=40&md5=31e8db4e6fb0491932458f6ee3c3a240

  84. El-Sayed H, Chaqfa M, Zeadally S, Puthal D (2019) A traffic-aware approach for enabling Unmanned Aerial Vehicles (UAVs) in smart city scenarios. IEEE Access 7:86297–86305. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068979645&doi=10.1109%2FACCESS.2019.2922213&partnerID=40&md5=47556b70453cad34910206ea0af5f37b

  85. Akter S, Dao TN, Yoon S (2021) Time-constrained task allocation and worker routing in mobile crowd-sensing using a decomposition technique and deep Q-learning. IEEE Access 9:95808–95822

    Article  Google Scholar 

  86. Roldán-Gómez JJ, Garcia-Aunon P, Mazariegos P, Barrientos A (2020) SwarmCity project: monitoring traffic, pedestrians, climate, and pollution with an aerial robotic swarm: Data collection and fusion in a smart city, and its representation using virtual reality. Pers Ubiquitous Comput. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081906360&doi=10.1007%2Fs00779-020-01379-2&partnerID=40&md5=35d46673924bb038fc3f20008fa1d8e4

  87. Liu CH, Chen ZY, Zhan YF (2019) Energy-efficient distributed mobile crowd sensing: a deep learning approach. IEEE J Sel Areas Commun 37(6):1262–1276

    Article  Google Scholar 

  88. Roberts R, Inzerillo L, Di Mino G (2020) Using UAV based 3d modelling to provide smart monitoring of road pavement conditions. Information (Switzerland) 11(12):1–24. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097521577&doi=10.3390%2Finfo11120568&partnerID=40&md5=a1b02552799170e8174e3e17e2b9b4c2

  89. Sharma A, Singh PK (2021) UAV-based framework for effective data analysis of forest fire detection using 5G networks: an effective approach towards smart cities solutions. Int J Commun Syst. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104642779&doi=10.1002%2Fdac.4826&partnerID=40&md5=ea4b0e4ced9414917bd8f366a3891979

  90. Dai MH, Su Z, Xu QC, Zhang N (2021) Vehicle assisted computing offloading for unmanned aerial vehicles in smart city. IEEE Trans Intell Transp Syst 22(3):1932–1944

    Article  Google Scholar 

  91. Postolache O, Dobre OA (2020) TC-13-wireless and telecommunications in measurements - in action. IEEE Instrum Meas Mag 23(8):14–17

    Article  Google Scholar 

  92. Xu HY, Xu XL, Xiao F (2021) Dubhe: a deep-learning-based B5G coverage analysis method. Eurasip J Adv Signal Process 2021(1).

    Google Scholar 

  93. Ilic D, Milosevic I, Ilic-Kosanovic T (2022) Application of unmanned aircraft systems for smart city transformation: case study Belgrade. Technol Forecast Soc Chang 176.

    Google Scholar 

  94. Moguel E, Conejero JM, Sánchez-Figueroa F, Hernández J, Preciado JC, Rodríguez-Echeverría R (2018) Towards the use of unmanned aerial systems for providing sustainable services in smart cities. Sensors (Switzerland) 18(1). https://doi.org/10.3390/s18010064

  95. Talcott CL, Wu D, McCann JA, Kim M, Arkhipov DI, Venkatasubramanian N, Regan AC (2016) ADDSEN: adaptive data processing and dissemination for drone swarms in urban sensing. IEEE Trans Comput 66(2):1–1. https://doi.org/10.1109/tc.2016.2584061

    Article  MathSciNet  MATH  Google Scholar 

  96. Tripicchio P, Satler M, Dabisias G, Ruffaldi E, Avizzano CA (2015) Towards smart farming and sustainable agriculture with drones. In: Proceedings - 2015 international conference on intelligent environments, IE 2015, pp 140–143. https://doi.org/10.1109/IE.2015.29

  97. Gallacher D (2017) Drone applications for environmental management in urban spaces: a review. Int J Sustain Land Use Urban Plan 3(4). https://doi.org/10.24102/ijslup.v3i4.738

  98. Menouar H, Guvenc I, Akkaya K, Uluagac AS, Kadri A, Tuncer A (2017) UAV-enabled intelligent transportation systems for the smart city: applications and challenges. IEEE Commun Mag 55(3):22–28. https://doi.org/10.1109/MCOM.2017.1600238CM

    Article  Google Scholar 

  99. Ortiz S, Calafate CT, Cano J-C., Manzoni P, Toh CK (2019) A UAV-Based Content Delivery Architecture for Rural Areas and Future Smart Cities. IEEE Internet Computing, 23(1), 29–36. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058099072&doi=10.1109%2FMIC.2018.2884277&partnerID=40&md5=1e5cc4f8dc514840b776b76183bc3427

  100. Teng H, Dong M, Liu Y, Tian W, Liu X (2021) A low-cost physical location discovery scheme for large-scale Internet of Things in smart city through joint use of vehicles and UAVs. Futur Gener Comput Syst 118:310–326. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099786711&doi=10.1016%2Fj.future.2021.01.032&partnerID=40&md5=5ba9d38b3f582b93c2098c40c6b7728f

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rewati Raman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raman, R., Datta, U. (2023). The Role of ‘Unmanned Aerial Vehicles’ in Smart City Planning and Management. In: Jain, K., Mishra, V., Pradhan, B. (eds) Proceedings of UASG 2021: Wings 4 Sustainability. UASG 2021. Lecture Notes in Civil Engineering, vol 304. Springer, Cham. https://doi.org/10.1007/978-3-031-19309-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19309-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19308-8

  • Online ISBN: 978-3-031-19309-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics