Skip to main content

Post’s Correspondence Problem: From Computer Science to Algebra

  • Conference paper
  • First Online:
Book cover Reachability Problems (RP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13608))

Included in the following conference series:

Abstract

In this short survey we describe recent advances on the Post Correspondence Problem in group theory that were inspired by results in computer science. These algebraic advances can, in return, provide a source of interesting problems in more applied, computational settings.

Post’s Correspondence Problem (PCP) is a classical decision problem in theoretical computer science that asks whether for a pair of free monoid morphisms \(g, h:\varSigma ^*\rightarrow \varDelta ^*\) there is any non-trivial \(x\in \varSigma ^*\) such that \(g(x)=h(x)\). One can similarly phrase a PCP for general groups, rather than free monoids, by asking whether pairs gh of group homomorphisms agree on any inputs. This leads to interesting and unexpected (un)decidability results for PCP in groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumslag, G., Cannonito, F.B., Robinson, D.J., Segal, D.: The algorithmic theory of polycyclic-by-finite groups. J. Algebra 142(1), 118–149 (1991). https://doi.org/10.1016/0021-8693(91)90221-S, https://doi.org/10.1016/0021-8693(91)90221-S

  2. Belegradek, I., Osin, D.: Rips construction and Kazhdan property (T). Groups Geom. Dyn. 2(1), 1–12 (2008). https://doi.org/10.4171/GGD/29, https://doi.org/10.4171/GGD/29

  3. Blackburn, N.: Conjugacy in nilpotent groups. Proc. Amer. Math. Soc. 16, 143–148 (1965). https://doi.org/10.2307/2034018, https://doi.org/10.2307/2034018

  4. Bogopolski, O., Maslakova, O.: An algorithm for finding a basis of the fixed point subgroup of an automorphism of a free group. Internat. J. Algebra Comput. 26(1), 29–67 (2016). https://doi.org/10.1142/S0218196716500028

    Article  MathSciNet  MATH  Google Scholar 

  5. Ciobanu, L., Elder, M.: The complexity of solution sets to equations in hyperbolic groups. Israel J. Math. 245(2), 869–920 (2021). https://doi.org/10.1007/s11856-021-2232-z, https://doi-org.ezproxy.st-andrews.ac.uk/10.1007/s11856-021-2232-z

  6. Ciobanu, Laura, Logan, Alan D..: Variations on the Post correspondence problem for free groups. In: Moreira, Nelma, Reis, Rogério (eds.) DLT 2021. LNCS, vol. 12811, pp. 90–102. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81508-0_8

    Chapter  Google Scholar 

  7. Ciobanu, L., Martino, A., Ventura, E.: The generic Hanna Neumann Conjecture and Post Correspondence Problem (2008). http://www-eupm.upc.es/~ventura/ventura/files/31t.pdf

  8. Ciobanu, L., Logan, A.D.: The post correspondence problem and equalisers for certain free group and monoid morphisms. In: 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020), pp. 120:1–120:16 (2020)

    Google Scholar 

  9. Dahmani, F., Guirardel, V.: Foliations for solving equations in groups: free, virtually free, and hyperbolic groups. J. Topol. 3(2), 343–404 (2010). https://doi.org/10.1112/jtopol/jtq010, https://doi-org.ezproxy.st-andrews.ac.uk/10.1112/jtopol/jtq010

    Google Scholar 

  10. Duchin, M., Liang, H., Shapiro, M.: Equations in nilpotent groups. Proc. Amer. Math. Soc. 143(11), 4723–4731 (2015). https://doi.org/10.1090/proc/12630, https://doi.org/10.1090/proc/12630

  11. Ehrenfeucht, A., Karhumäki, J., Rozenberg, G.: The (generalized) Post correspondence problem with lists consisting of two words is decidable. Theoret. Comput. Sci. 21(2), 119–144 (1982). https://doi.org/10.1016/0304-3975(89)90080-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Feighn, M., Handel, M.: Algorithmic constructions of relative train track maps and CTs. Groups Geom. Dyn. 12(3), 1159–1238 (2018). https://doi.org/10.4171/GGD/466

    Article  MathSciNet  MATH  Google Scholar 

  13. Garreta, A., Miasnikov, A., Ovchinnikov, D.: Random nilpotent groups, polycyclic presentations, and Diophantine problems. Groups Complex. Cryptol. 9(2), 99–115 (2017). https://doi.org/10.1515/gcc-2017-0007, https://doi.org/10.1515/gcc-2017-0007

  14. Gilman, R., Miasnikov, A.G., Myasnikov, A.D., Ushakov, A.: Report on generic case complexity (2007). https://arxiv.org/pdf/0707.1364v1.pdf

  15. Goldstein, R.Z., Turner, E.C.: Fixed subgroups of homomorphisms of free groups. Bull. London Math. Soc. 18(5), 468–470 (1986). https://doi.org/10.1112/blms/18.5.468

    Article  MathSciNet  MATH  Google Scholar 

  16. Halava, V., Hirvensalo, M., de Wolf, R.: Marked PCP is decidable. Theoret. Comput. Sci. 255(1–2), 193–204 (2001). https://doi.org/10.1016/S0304-3975(99)00163-2

    Article  MathSciNet  MATH  Google Scholar 

  17. Harju, T., Karhumäki, J.: Morphisms. In: Handbook of Formal Languages, Vol. 1, pp. 439–510. Springer, Berlin (1997). https://doi.org/10.1007/978-3-642-59136-5

  18. Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Generic-case complexity, decision problems in group theory, and random walks. J. Algebra 264(2), 665–694 (2003)

    Article  MathSciNet  Google Scholar 

  19. Karhumäki, J., Saarela, A.: Noneffective regularity of equality languages and bounded delay morphisms. Discrete Math. Theor. Comput. Sci. 12(4), 9–17 (2010)

    MathSciNet  MATH  Google Scholar 

  20. König, D., Lohrey, M.: Evaluation of circuits over nilpotent and polycyclic groups. Algorithmica 80(5), 1459–1492 (2018). https://doi.org/10.1007/s00453-017-0343-z, https://doi-org.ezproxy.st-andrews.ac.uk/10.1007/s00453-017-0343-z

  21. König, D., Lohrey, M., Zetzsche, G.: Knapsack and subset sum problems in nilpotent, polycyclic, and co-context-free groups. Algebra Comput. Sci. Contemp. Math. 677, 129–144. American Mathematical Society, Providence, RI (2016). https://doi.org/10.1090/conm/677, https://doi-org.ezproxy.st-andrews.ac.uk/10.1090/conm/677

  22. Laura Ciobanu, A.D.L.: Fixed points and stable images of endomorphisms for the free group of rank two. J. Algebra 591, 538–576 (2022). https://doi.org/10.1007/BF02095993

  23. Lecerf, Y.: Récursive insolubilité de l’équation générale de diagonalisation de deux monomorphismes de monoïdes libres \(\varphi x=\psi x\). C. R. Acad. Sci. Paris 257, 2940–2943 (1963)

    MathSciNet  MATH  Google Scholar 

  24. Levine, A., Logan, A.D.: On Post’s correspondence problem for hyperbolic and virtually nilpotent groups. 17, 991–1008, (2022, work in progress)

    Google Scholar 

  25. Lo, E.H.: Finding intersections and normalizers in finitely generated nilpotent groups. J. Symbolic Comput. 25(1), 45–59 (1998). https://doi.org/10.1006/jsco.1997.0166, https://doi.org/10.1006/jsco.1997.0166

  26. Myasnikov, A., Nikolaev, A., Ushakov, A.: The Post correspondence problem in groups. J. Group Theory 17(6), 991–1008 (2014)

    Article  MathSciNet  Google Scholar 

  27. Neary, T.: Undecidability in binary tag systems and the Post correspondence problem for five pairs of words 30, 649–661 (2015)

    Google Scholar 

  28. Neumann, H.: Varieties of Groups. Springer-Verlag, New York (1967). https://doi.org/10.1007/978-3-642-88599-0

    Book  MATH  Google Scholar 

  29. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Amer. Math. Soc. 52, 264–268 (1946). https://doi.org/10.1090/S0002-9904-1946-08555-9

    Article  MathSciNet  MATH  Google Scholar 

  30. Repin, N.N.: Equations with one unknown in nilpotent groups. Mat. Zametki 34(2), 201–206 (1983)

    MathSciNet  Google Scholar 

  31. Rips, E.: Subgroups of small cancellation groups. Bull. London Math. Soc. 14(1), 45–47 (1982). https://doi.org/10.1112/blms/14.1.45, https://doi-org.ezproxy.st-andrews.ac.uk/10.1112/blms/14.1.45

  32. Roman’kov, V.A.: Unsolvability of the problem of endomorphic reducibility in free nilpotent groups and in free rings. Algebra i Logika 16(4), 457–471, 494 (1977)

    Google Scholar 

  33. Roman’kov, V.A.: Diophantine questions in the class of finitely generated nilpotent groups. J. Group Theory 19(3), 497–514 (2016). https://doi.org/10.1515/jgth-2016-0504, https://doi.org/10.1515/jgth-2016-0504

  34. Stallings, J.R.: Graphical theory of automorphisms of free groups. In: Combinatorial Group Theory and Topology (Alta, Utah, 1984), Annals of Mathematics Studies, vol. 111, pp. 79–105. Princeton University Press, Princeton (1987). https://doi.org/10.1007/978-1-4612-4372-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Ciobanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ciobanu, L. (2022). Post’s Correspondence Problem: From Computer Science to Algebra. In: Lin, A.W., Zetzsche, G., Potapov, I. (eds) Reachability Problems. RP 2022. Lecture Notes in Computer Science, vol 13608. Springer, Cham. https://doi.org/10.1007/978-3-031-19135-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19135-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19134-3

  • Online ISBN: 978-3-031-19135-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics