Skip to main content

Two-Phase Water and Its Coil-to-Bridge Transitions

  • Chapter
  • First Online:
Self-Assembled Water Chains
  • 114 Accesses

Abstract

The downward portions are analyzed with the two-state Boltzmann statistics and surprisingly support the mixture model. The data is fitted well with “two-phase water” and its coil-to-bridge transition. The two-phase water consists of self-assembled water chains that are in equilibrium with liquid. The coexistence of the chain phase with liquid in water can explain the long-range condensation distances, high viscosity of water, the humidity-dependent phase transition, the larger waist radius of water meniscus between AFM tip and a surface, and the long nucleation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. E. van Holde, W. C. Johnson, and P. S. Ho: Principles of Physical Biochemistry, 2nd edition (2006). Ch14 Macromolecule Thermodynamics

    Google Scholar 

  2. Frank, H. S. & Evans, M. W. Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507–532 (1945).

    Article  ADS  Google Scholar 

  3. Kauzmann, W. Some factors in interpretation of protein denaturation. Adv. Protein Chem. 14, 1–63 (1959).

    Article  Google Scholar 

  4. F. H. Stillinger, Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory J. Solution Chem. 2, 141 (1973).

    Article  Google Scholar 

  5. V. V. Yaminsky and E. A. Voglerb Hydrophobic hydration, Current Opinion in Colloid & Interface Science 6. 342–349 (2001).

    Google Scholar 

  6. P. Ball, Chem Rev. Water as an Active Constituent in Cell Biology, 108, 74 (2008).

    Google Scholar 

  7. Southall, N. T.; Dill, K. A. The Mechanism of Hydrophobic Solvation Depends on Solute Radius, J. Phys. Chem. B, 2000,104, 1326–1331.

    Article  Google Scholar 

  8. P. Attard, Nanobubbles and the hydrophobic attraction Adv. Colloid Interface Sci. 104, 75 (2003).

    Article  Google Scholar 

  9. J. Russo, S. Melchionna, F. De Luca, and C. Casieri, Water confined in nanopores: Spontaneous formation of microcavities, Phys. Rev. B 76, 195403 (2007).

    Article  ADS  Google Scholar 

  10. K. Lum, D. Chandler, and J. D. Weeks, Hydrophobicity at Small and Large Length Scales, J. Phys. Chem. B, 103, 4570–4577 (1999).

    Article  Google Scholar 

  11. C. Camilloni, et al. Towards a structural biology of the hydrophobic effect in protein folding. Sci Rep 6 28285(2016).

    Article  ADS  Google Scholar 

  12. Richard C. Remsing*,† and John D. Weeks, Dissecting Hydrophobic Hydration and Association, J. Phys. Chem. B, 117, 15479−15491 (2013).

    Google Scholar 

  13. G. L. Richmond, Molecular Bonding and Interactions at Aqueous Surfaces as Probed by Vibrational Sum Frequency Spectroscopy, Chem. Rev. 102, 2693–2724 (2002).

    Article  Google Scholar 

  14. M. Matsumoto and Y. Kataoka, Study on liquid–vapor interface of water. I. Simulational results of thermodynamic properties and orientational structure, J. Chem. Phys. 88, 3233 (1988)

    Article  ADS  Google Scholar 

  15. O. Teschke and E.F. de Souza, Water molecular arrangement at air/water interfaces probed by atomic force microscopy, Chem. Phys. Lett. 403 95–101 (2005)

    Article  ADS  Google Scholar 

  16. G. Hummer, J. C. Rasaiah, J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414, 188–190 (2001).

    Article  ADS  Google Scholar 

  17. W. H. Noon, K. D. Ausman, R. E. Smalley, J. Ma, Helical ice-sheets inside carbon nanotubes in the physiological condition, Chem. Phys. Lett., 355, 445–448 (2002).

    Article  ADS  Google Scholar 

  18. N. Ishida, T. Inoue, M. Miyahara, and K. Higashitani Nano Bubbles on a Hydrophobic Surface in Water Observed by Tapping-Mode Atomic Force Microscopy, Langmuir 2000, 16, 6377–6380.

    Google Scholar 

  19. O. Teschke and E.F. de Souza, Water molecule clusters measured at water/air interfaces using atomic force microscopy, Phys. Chem. Chem. Phys. 2005, 7, 3856–3865.

    Google Scholar 

  20. J. C. Eriksson and U. Henriksson, Bridging-Cluster Model for Hydrophobic Attraction Langmuir 2007, 23, 10026–10033

    Google Scholar 

  21. D. B. Asay and S. H. Kim, Effects of Adsorbed Water Layer Structure on Adhesion Force of Silicon Oxide Nanoasperity Contact in Humid Ambient, J. Chem. Phys. 124, 174712 (2006).

    Article  ADS  Google Scholar 

  22. Sumner, A.L.; Menke, E.J.; Dubowski, Y.; Newberg, J.T.; Penner, R.M.; Hemminger, J.C.; Wingen, L.M.; Brauers, T. ; Finlayson-Pitts, B. The nature of water on surfaces of laboratory systems and implications for heterogeneous chemistry in the troposphere J. Phys. Chem. Chem Phys. 2004, 6, 604–613.

    Article  Google Scholar 

  23. Sedin, D. L.; Rowlen, K. L. Adhesion Forces Measured by Atomic Force Microscopy in Humid Air, Anal. Chem. 2000, 72, 2183–2189.

    Article  Google Scholar 

  24. Xiao, X. D.; Qian, L. M. Investigation of Humidity-Dependent Capillary Force, Langmuir 2000, 16, 8153–8158.

    Article  Google Scholar 

  25. Kim, B. I.; Boehm, R. D. Mechanical Property Investigation of Soft Materials by Cantilever-Based Optical Interfacial Force Microscopy, Scanning, 2013, 35, 59–67.

    Article  Google Scholar 

  26. B. I. Kim, J. A. Rasmussen, and E. J. Kim, Large oscillatory forces generated by interfacial water under lateral modulation between two hydrophilic surfaces, Appl. Phys. Lett. 99, 201902 (2011).

    Article  ADS  Google Scholar 

  27. B. I. Kim., R. D. Boehm, and J. R. Bonander, Direct Observation of Self-assembled Chain-like Water Structures in a Nanoscopic Water Meniscus, J. Chem. Phys. 139, 054701 (2013).

    Article  ADS  Google Scholar 

  28. C. M. Mate, V. J. Novotny, Molecular conformation and disjoining pressure of polymeric liquid films, J. Chem. Phys., 94, 8420 (1991).

    Article  ADS  Google Scholar 

  29. J. Crassous, E. Charlaix, and J. Loubet, Phys. Rev. Lett. 78, 2425 (1997).

    Article  ADS  Google Scholar 

  30. B. I. Kim, R. D. Boehm, and H. Agrusa, Coil-to-Bridge Transitions of Self-Assembled Chain-like Water Observed in a Nanoscopic Meniscus, Langmuir, 38, 4538−4546 (2022).

    Article  Google Scholar 

  31. Mate, C. M., M. R. Lorenz and V. J. Novotny. Atomic force microscopy of polymeric liquid-films. Journal of Chemical Physics 90 7550–7555 (1989).

    Article  ADS  Google Scholar 

  32. Mate, C. M., Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear, Mesoscopic Physics and Nanotechnology, Oxford University Press, 2008.

    Google Scholar 

  33. Phillips, R.; Kondev, J.; Theriot, J. Physical Biology of the Cell, Garland Science, New York, (2009).

    Google Scholar 

  34. Barthel, E.; Lin, X. Y.; Loubet, J. L. Adhesion Energy Measurements in the Presence of Adsorbed Liquid Using a Rigid Surface Force Apparatus, J. Colloid Interface Sci. 1996, 177, 401–406.

    Article  ADS  Google Scholar 

  35. Butt, H. J.; Kappl, M. Normal Capillary Forces, Adv. Colloid Interface Sci. 2009, 146, 48–60.

    Article  Google Scholar 

  36. Weeks, B. L.; Vaughn, M.W.; DeYoreo, J.J. Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy, Langmuir 2005, 21, 8096–8098.

    Article  Google Scholar 

  37. Nelson, P. Biological Physics. W.H. Freeman & Co., New York, (2004).

    Google Scholar 

  38. Israelachvili, J. N. Intermolecular and Surface Forces, 2nd ed. (Academic Press, Inc., San Diego, CA, (1991).

    Google Scholar 

  39. Marin, A.; Warbrick, J.; Cammarata, A. Physical Pharmacy 3rd Ed. Lea & Febiger, Philadelphia (1983)

    Google Scholar 

  40. Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Naslund, L.A.; Hirsch, T.K.; Ojamae, L.; Glatzel, P.; Pettersson, L.G.M.; Nilsson, A. The structure of the first coordination shell in liquid water, Science 2004, 304, 995–999.

    Google Scholar 

  41. Naserifara, S.; Goddard III, W. A. Liquid water is a dynamic polydisperse branched polymer, Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 1998–2003.

    Google Scholar 

  42. B. I. Kim, L. Smith, T. Tran, S. Rossland, and E. Parkinson, Cantilever-based optical interfacial force microscope in liquid using an optical-fiber tip AIP Advances 3, 032126 (2013).

    Google Scholar 

  43. K. Chiba, R. Ohmori, H. Tanigawa, T. Yoneoka, and S. Tanaka, H2O trapping on various materials studied by AFM and XPS, Fusion Eng. Des. 49, 791–797 (2000).

    Google Scholar 

  44. Z. Liu, Z. Li, H. Zhou, G. Wei, Y. Song, L. Wang, Observation of the mica surface by atomic force microscopy, Micron 36, 525–531 (2005).

    Google Scholar 

  45. Xu, L.; Lio, A.; Hu, J.; Ogletree, D. F.; Salmeron, M. Wetting and capillary phenomena of water on mica, J. Phys. Chem. B 1998, 102, 540–548.

    Google Scholar 

  46. M. Schenk, M. Futing, and R. Reichelt, J. Appl. Phys. 84, 4880–4884 (1998).

    Google Scholar 

  47. Jones, R. A. L. Soft Condensed Matter. New York, USA: Oxford University Press, 2002.

    Google Scholar 

  48. Bazant M. Z. and Bazant Z. P., Theory of sorption hysteresis in nanoporous solids: Part II Molecular condensation Journal of the Mechanics and Physics of Solids 60, 1660–1675 (2012).

    Google Scholar 

  49. S. Kim, D. Kim, J. Kim,S. An, and W. Jhe, Direct Evidence for Curvature-Dependent Surface Tension in Capillary Condensation: Kelvin Equation at Molecular Scale Phys. Rev. X 2018, 8, 041046–14.

    Google Scholar 

  50. Q. Yang, P. Z. Sun, L. Fumagalli, Y. V. Stebunov, S. J. Haigh, Z. W. Zhou, I. V. Grigorieva, F. C. Wang, and A. K. Geim, Capillary condensation under atomic-scale confinement, Nature 588, 250 (2020).

    Google Scholar 

  51. Szoszkiewicz, R.; Riedo, E. Nucleation Time of NanoscaleWater Bridges, Phys. Rev. Lett. 2005, 95, 135502–4.

    Google Scholar 

  52. Greiner, C.; Felts, J. R.; Dai, Z.; King, W. P.; Carpick, R. W. Local Nanoscale Heating Modulates Single-Asperity Friction, Nano Lett. 2010, 10, 4640–4645.

    Google Scholar 

  53. Sung, B.; Kim, J.; Stambaugh, C.; Chang, S.-J.; Jhe, W. Direct measurement of activation time and nucleation rate in capillary-condensed water nanomeniscus, Appl. Phys. Lett. 2013, 103, 213107–4.

    Google Scholar 

  54. Jinesh, K. B.; Frenken, J.W. M. Capillary Condensation in Atomic Scale Friction: How Water Acts like a Glue, Phys. Rev. Lett. 2006, 96, 166103–4.

    Google Scholar 

  55. Vitorino, M. V.; Vieira, A.; Marques, C. A.; Rodrigues, M. S. Direct measurement of the nucleation time of a water nanobridge Sci. Rep. 2018, 8, 13848–8.

    Google Scholar 

  56. Kim, B. I.; Boehm, R. D. Brush-to-FJC Transitions of Self-Assembled Water Chains through Capillary Condensation in a Nanoscopic Meniscus, in preparation.

    Google Scholar 

  57. Klushin, L. I.; Skvortsov, A. M.; Leermakers, F. A. M. Exactly solvable model with stable and metastable states for a polymer chain near an adsorbing surface Phys. Rev. E 2002, 66, 036114–11.

    Google Scholar 

  58. Kim, B. I.; Boehm, R.D. Imaging Stability in Force-Feedback High-Speed Atomic Force Microscopy, Ultramicroscopy 2013, 125, 29–34.

    Google Scholar 

  59. L. I. Klushin, A. M. Skvortsov, A. A. Polotsky, H.-P. Hsu, and K. Binder, Coil-bridge transition in a single polymer chain as an unconventional phase transition: Theory and simulation, J. Chem. Phys. 2014, 140, 204908–11.

    Google Scholar 

  60. Moghaddam, S. Z.; Thormann, E. The Hofmeister series: Specific ion effects in aqueous polymer solutions, J. Colloid Interface Sci 2019, 555, 615–635

    Google Scholar 

  61. B. Zhuang, G. Ramanauskaite, Z. Y. Koa, and Z.-G. Wang, Like dissolves like: A first-principles theory for predicting liquid miscibility and mixture dielectric constant Sci. Adv. 2021; 7

    Google Scholar 

  62. J. L Parker, P. M. Claesson, and P. Attard, J. Phys. Chem., 98, 8468 (1994).

    Google Scholar 

  63. H. I. Kim, J. G. Kushmerick, J. E. Houston, and B. C. Bunker, Viscous “interphase” water adjacent to oligo(ethylene glycol)-terminated monolayers. Langmuir 19, 9271 (2003).

    Google Scholar 

  64. Wiggins, P. M. High and low density water in gels, Prog. Polym. Sci. 1995, 20, 1121–1163.

    Google Scholar 

  65. McDermott, M. L.; Vanselous, H.; Corcelli, S. A.; Petersen, P. B. DNA’s Chiral Spine of Hydration, ACS Cent. Sci. 2017, 3, 708–714.

    Google Scholar 

  66. Sharp K. A., A peek at ice binding by antifreeze proteins, Proc. Natl. Acad. Sci. U.S.A. 108, 7281–7282 (2011).

    Google Scholar 

  67. Chaikin, P.and Lubensky, T. (1995). Principles of condensed matter physics, Cambridge University Press, 0-521-43224-3, New York

    Google Scholar 

  68. Sun, T.; Lin, F. H.; Campbell, R. L.; Allingham, J. S.; Davies, P. L. An Antifreeze Protein Folds with an Interior Network of More than 400 Semi-Clathrate Waters, Science 2014, 343, 795–798.

    Google Scholar 

  69. P. Aryal, M. S. P. Sansom, S. J. Tucker, Hydrophobic Gating in Ion Channels. J. Mol. Biol., 427 (1), 121−130 (2015);

    Article  Google Scholar 

  70. H. Frauenfelder, S. G. Sligar, P. G. Wolynes, The Energy Landscapes and Motions of Proteins Science 254, 1598–1603 (1991).

    Article  ADS  Google Scholar 

  71. J. R. Lewandowski, M. E. Halse, M. Blackledge, L. Emsley, Direct observation of hierarchical protein dynamics, 348 578 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, B.I. (2023). Two-Phase Water and Its Coil-to-Bridge Transitions. In: Self-Assembled Water Chains. Springer, Cham. https://doi.org/10.1007/978-3-031-19087-2_6

Download citation

Publish with us

Policies and ethics