Skip to main content

Long-Range Condensations of Humid Air

  • Chapter
  • First Online:
Self-Assembled Water Chains
  • 115 Accesses

Abstract

We have observed the humidity-dependent structural transition and long nucleation times in nanoscopic water menisci through indirect measurements such as pull-off force and friction. The observed phenomena have not been explained with the properties of bulk water. The unexplained phenomena underscore the fact that very little is known about the structure of confined water and its formation mechanism at the nanometer scale. To assess these data and models, more innovative measurements are required. The latest advancement of atomic force microscopy (AFM) leads to IFM and COIFM (cantilever-based optical IFM) where the force-feedback technique is employed. The IFM and COIFM allow us to directly manipulate and observe the structure and behavior of the meniscus at the nanoscale. IFM starts to detect the attractive force on the tip at a distance of ~3 nm (where the water bridge forms) as the tip approaches the surface. The IFM onset distance of ~3 nm is much shorter than the onset distance of ~10 nm measured by a sharp AFM probe of COIFM on a flat substrate. The onset distance of 3 nm is still two to three times larger than the onset distance, 2rK = 1.3 nm, predicted by the Kelvin equation at RH 45%, indicating that a phase other than liquid water is necessary. While the forces in the IFM data change monotonously with the positive slopes, the COFM data are oscillatory as the tip approaches the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. L. Weeks, M. W. Vaughn, and J. J. DeYoreo, Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy, Langmuir 21, 8096–8098 (2005).

    Article  Google Scholar 

  2. M. Schenk, M. Futing, and R. Reichelt, Direct visualization of the dynamic behavior of a water meniscus by scanning electron microscopy, J. Appl. Phys. 84, 4880–4884 (1998).

    Article  ADS  Google Scholar 

  3. V. V. Yaminsky, S. Ohnishi, and B. W. Ninham, Handbook of Surfaces and Interfaces of Materials, Eds.H. S. Nalwa (Academic Press, New York, 2001), Vol. 4, p. 132–226.

    Google Scholar 

  4. E. Meyer, H. Heinzelmann, P. Grütter, T.H. Jung, T. Weisskopf, H.R. Hidber, R. Lapka, H. Rudin, and H.J. Güntherodt, Comparative study of lithium fluoride and graphite by atomic force microscopy (AFM), J. Microsc.-Oxford. 152, 269 (1988).

    Article  Google Scholar 

  5. Ashby, P.D., Chen, L., & Lieber, C.M. (2000). Probing intermolecular forces and potentials with magnetic feedback chemical force microscopy. J. Am. Chem. Soc., Vol. 122, No. 39, (September 2000), pp. (9467–9472).

    Google Scholar 

  6. Jarvis, S.P., Yamada, H., Yamamoto, S., Tokumoto, H., & Pethica, J.B. (1996). Direct mechanical measurement of interatomic potentials. Nature, Vol. 384, No. 6606, (November 1996), pp. (247–249), 1476-4687.

    Google Scholar 

  7. Stewart, A.M., & Parker, J.L. (1992). Force feedback surface force apparatus: principles of operation. Rev. Sci. Instrum., Vol. 63, No. 12, (December 1992), pp. (5626–5633), 0034-6748.

    Google Scholar 

  8. Yamamoto, S.I., Yamada, H., & Tokumoto, H. (1997). Precise force curve detection system with a cantilever controlled by magnetic force feedback. Review of Scientific Instruments, Vol. 68, No. 11, (August 1997), pp. (4132–4136).

    Google Scholar 

  9. S. A. Joyce, J. E.Houston, A New Force Sensor Incorporating Force-Feedback Control for Interfacial Force Microscopy. Rev. Sci. Instrum. 62, 710 (1991).

    Article  ADS  Google Scholar 

  10. Houston, J.E., & Michalske, T.A. (1992). The interfacial-force microscope. Nature, Vol. 356, No. 6366, (March 1992), pp. (266–267), 0028-0836.

    Google Scholar 

  11. Chang, K.K., Shie, N.C., Tai, H.M., & Chen, T.L. (2004), A micro force sensor using force-balancing feedback control system and optic-fiber interferometers. Tamkang Journal of Science and Engineering, Vol. 7, No. 2, pp. (91–94).

    Google Scholar 

  12. Major, R. C.; Houston, J. E.; McGrath, M. J.; Siepmann, J. I.; Zhu, X.-Y. Viscous water meniscus under nanoconfinement Phys. Rev. Lett. 2006, 96, 177803-4.

    Article  ADS  Google Scholar 

  13. M. P. Goertz, J. E. Houston, and X. -Y. Zhu, Hydrophilicity and the Viscosity of Interfacial Water, Langmuir 23, 5491–5497 (2007).

    Google Scholar 

  14. R. C. Major, J. E. Houston, M. J. McGrath, J. I. Siepmann, and X. -Y. Zhu, Viscous Water Meniscus under Nanoconfinement, Phys. Rev. Lett. 96, 177803 (2006).

    Google Scholar 

  15. G. L. Miller, J. E. Griffith, and E. R. Wagner, A rocking beam electrostatic balance for the measurement of small forces, Rev. Sci. Instrum. 62, 705 (1991).

    Google Scholar 

  16. N. Kato, H. Kikuta, T. Nakano, T. Matsumoto, and K. Iwata, System analysis of the force-feedback method for force curve measurements, Rev. Sci. Instrum. 70, 2402 (1999);

    Article  ADS  Google Scholar 

  17. Goertz, M.P.; Moore, N.W. Mechanics of soft interfaces studied with displacement-controlled scanning force microscopy, Prog. Surf. Sci. 2010, 85 347–397.

    Article  ADS  Google Scholar 

  18. Kim, H.I., & Houston, J.E. (2000). Separating mechanical and chemical contributions to molecular-level friction. J. Am. Chem. Soc., Vol. 122, No. 48, (August 2000), pp. (12045–12046).

    Google Scholar 

  19. Göddenhenrich, T., Müller, S., and Heiden, C. A lateral modulation technique for simultaneous friction and topography measurements with the atomic force microscope. Rev. Sci. Instrum., 65, 2870–2873 (1994).

    Article  ADS  Google Scholar 

  20. Burns, A.R., Houston, J.E., Carpick, R.W., & Michalske, T.A. (1999A). Friction and molecular deformation in the tensile regime. Phys. Rev. Lett., Vol. 82, No. 6, (February 1999), pp. (1181–1184), 0031-9007.

    Google Scholar 

  21. H. Choe, M. H. Hong, Y. Seo, K. Lee, G. Kim, Y. Cho, J. Ihm and W. Jhe, Formation, Manipulation, and Elasticity Measurement of a Nanometric Column of Water Molecules Phys. Rev. Lett. 95, 187801 (2005)

    Article  ADS  Google Scholar 

  22. M. Antognozzi, A.D.L. Humphris, M.J. Miles, Observation of molecular layering in a confined water film and study of the layer viscoelastic properties, Appl. Phys. Lett., 78, 300(2001).

    Article  ADS  Google Scholar 

  23. S. Jeffery, P.M. Hoffmann, J.B. Pethica, C Ramanujan, Direct measurement of molecular stiffness and damping in confined water layers, Phys Rev. B 70, 54114-1-8(2004).

    Google Scholar 

  24. Jarvis, S.P., Uchihashi, T., Ishida, T., Tokumoto, H., & Nakayama, Y. (2000). Local solvation shell measurement in water using a carbon nanotube probe. The Journal of Physical Chemistry B, Vol. 104, No. 26, (June 2000), pp. (6091–6094), 1520-6106.

    Google Scholar 

  25. Meade, M. L. Lock-in Amplifiers: Principles and Applications. Peter Peregrinus Ltd. London, UK (1983).

    Google Scholar 

  26. B. I. Kim, R. D. Boehm, and H. Agrusa, Coil-to-Bridge Transitions of Self-Assembled Water Chains Observed in a Nanoscopic Meniscus Langmuir, 38, 4538−4546 (2022).

    Article  Google Scholar 

  27. T. M. Mayer, M. P. de Boer, N. D. Shinn, P. J. Clews, and T. A. Michalske, Chemical vapor deposition of fluoroalkylsilane monolayer films for adhesion control in microelectromechanical systems J. Vac. Sci. & Tech. B 18 2433–2440 (2000).

    Article  Google Scholar 

  28. R. C. Major, J. E. Houston, M. J. McGrath, et al. Viscous water meniscus under nanoconfinement Phys. Rev. Lett. 96 177803 (2006).

    Article  ADS  Google Scholar 

  29. S.A. Joyce, J. E. Houston, Rev. Sci. Instrum., A new force sensor incorporating force-feedback control for interfacial force microscopy. 62, 710(1991).

    Google Scholar 

  30. M.P. Goertz and N.W. Moore, Mechanics of soft interfaces studied with displacement-controlled scanning force microscopy Prog. Surf. Sci. 85 347(2010).

    Article  Google Scholar 

  31. D. L. Huber, R. P. Maginell, M. A. Samara, B.-I. Kim, and B. C. Bunker, Programmed Adsorption and Release of Proteins in a Microfluidic Device, Science 301, 352(2003).

    Article  ADS  Google Scholar 

  32. B. C. Bunker, B. I. Kim, J. E. Houston, S. T. Picraux, R. Rosario, A. A. Garcia, M. Hayes, and D. Gust, Observations of Photo-Switching in Tethered Spiropyrans Using the IFM, Nano Letters 3, 1723(2003).

    Article  ADS  Google Scholar 

  33. J. R. Bonander and B. I. Kim, Cantilever Based Optical Interfacial Force Microscope, Appl. Phys. Lett. 92, 103124 (2008).

    Google Scholar 

  34. Kim, B. I.; Bonander, J. R.; Rasmussen, J. A. Simultaneous measurement of normal and frictional forces using a cantilever-based optical interfacial force microscope, Rev. Sci. Instrum. 2011, 82, 053711–5.

    Article  ADS  Google Scholar 

  35. Kim, B. I.; Smith, L.; Tran, T.; Rossland, S.; Parkinson, E. Cantilever-based optical interfacial force microscope in liquid using an optical-fiber tip, AIP Advances 2013, 3, 032126–5.

    Article  ADS  Google Scholar 

  36. B. I. Kim, Cantilever-Based Optical Interfacial Force Microscopy, in: A. Meghea (Eds.), Molecular Interactions, Intech, ISBN: 978-953-51-0079-9, (InTech, New York, 2012), p.125–144.

    Google Scholar 

  37. Meyer, E., Heinzelmann, H., Grütter, P., Jung, T., Weisskopf, T., Hidber, H., Lapka, R., Rudin, H., & Güntherodt, H. (1988). Comparative study of lithium fluoride and graphite by atomic force microscopy (AFM). Journal of Microscopy, Vol. 152, No. 1, (October 1988), pp. (269–280), 1365-2818.

    Google Scholar 

  38. Bruker Corporation (2011). Probes and Accessories, Bruker, Camarillo, CA.

    Google Scholar 

  39. Rogers, B., Manning, L., Sulchek, T., & Adams, J. (2004). Improving tapping mode atomic force microscopy with piezoelectric cantilevers. Ultramicroscopy, Vol. 100, No. 3–4, (August 2004), pp. (267–276), 0304-3991.

    Google Scholar 

  40. Vázquez, J., Rivera, M.A., Hernando, J., & Sánchez-Rojas, J.L. (2009). Dynamic response to low aspect ratio piezoelectric microcantilevers actuated in different liquid environments. J. Micromech. Microeng., Vol. 19, No. 1, (January 2009), pp. (1–9), 0960-1317.

    Google Scholar 

  41. Kim, B.I. (2004). Direct comparison between phase locked oscillator and direct resonance oscillator in the noncontact atomic force microscopy under ultrahigh vacuum. Review of Scientific Instruments, Vol. 75, No. 11, (November 2004), pp. (5035–5037), 0034-6748.

    Google Scholar 

  42. Sader J.E., (2003) “Susceptibility of atomic force microscope cantilevers to lateral forces.” Rev. Sci. Instr. 74, 2438.

    Article  ADS  Google Scholar 

  43. Iler, R.K. (1979). The chemistry of silica : solubility, polymerization, colloid and surface properties, and biochemistry, Wiley, New York.

    Google Scholar 

  44. J. Hu, X. D. Xiao, and M. Salmeron, Scanning polarization force microscopy: A technique for imaging liquids and weakly adsorbed layers, Appl. Phys. Lett. 67, 476 (1995).

    Article  ADS  Google Scholar 

  45. C. Spagnoli, K. Loos, A.Ulmanand, and M. K. Cowman, Imaging structured water and bound polysaccharide on mica surface at ambient temperature, J. Am. Chem. Soc. 125, 7124 (2003).

    Article  Google Scholar 

  46. Kim, B. I.; Rasmussen, J.A.; Kim, E. J. Large oscillatory forces generated by interfacial water under lateral modulation between two hydrophilic surfaces, Appl. Phys. Lett. 2011, 99, 201902–3.

    Article  ADS  Google Scholar 

  47. Asay, D.B., & Kim, S.H. (2005). Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. B, Vol. 109, No. 35, (August 2005), pp. (16760–16763), 1520-6106.

    Google Scholar 

  48. Asay, D.B., & Kim, S.H. (2006). Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact in humid ambient. J. Chem. Phys., Vol. 124, No. 17, (May 2006), pp. (174712/1–174712/5), 0021-9606.

    Google Scholar 

  49. Senden, T.J. (2001). Force microscopy and surface interactions. Current Opinion in Colloid & Interface Science, Vol. 6, No. 2, (May 2001), pp. (95–101), 1359-0294.

    Google Scholar 

  50. Verdaguer, A., Sacha, G.M., Bluhm, H., & Salmeron, M. (2006). Molecular structure of water at interfaces: wetting at the nanometer scale. Chem. Rev.,Vol. 106, (March 2006), pp. 1478–1510.

    Google Scholar 

  51. Antognozzi, M., Humphris, A.D.L., & Miles, M.J. (2001). Observation of molecular layering in a confined water film and study of the layers viscoelastic properties. Appl. Phys. Lett., Vol. 78, No. 3, (January 2001), pp. (300–302), 0003-6951.

    Google Scholar 

  52. Jeffery, S., Hoffmann, P.M., Pethica, J.B., Ramanujan, C., Özer, H., & Oral, A. (2004). Direct measurement of molecular stiffness and damping in confined water layers. Phys. Rev. B, Vol. 70, No. 5, (August 2004), pp. (054114.1–054114.8), 1098-0121.

    Google Scholar 

  53. Uchihashi, T., Higgins, M., Nakayama, Y., Sader, J.E., & Jarvis, S.P., (2005). Quantitative measurement of solvation shells using frequency modulated atomic force microscopy. Nanotechnology, Vol. 16, No. 3, (January 2005), pp. (S49–S53), 0957-4484.

    Google Scholar 

  54. I.N. Serdyuk, NR Zaccai, J. Zaccai, and G. Zaccai, Methods in Molecular Biophysics: Structure, Dynamics, Function, (Cambridge University Press, Cambridge, England, 2007).

    Google Scholar 

  55. M. V. Vitorino, A. Vieira, C. A. Marques, and M. S. Rodrigues, Direct measurement of the nucleation time of a water nanobridge Sci. Rep. 8, 13848 (2018).

    Google Scholar 

  56. Szoszkiewicz, R.; Riedo, E. Nucleation Time of Nanoscale Water Bridges, Phys. Rev. Lett. 2005, 95, 135502–4.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, B.I. (2023). Long-Range Condensations of Humid Air. In: Self-Assembled Water Chains. Springer, Cham. https://doi.org/10.1007/978-3-031-19087-2_4

Download citation

Publish with us

Policies and ethics