Skip to main content

Impact of Climate Change on Livelihood Security and Biodiversity – Issues and Mitigation Strategies

  • Chapter
  • First Online:
Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems

Abstract

Climate change is one of the most pressing issues of our day, posing a threat to the lives and livelihoods of billions of people worldwide. Natural disasters, biodiversity loss, and rising temperatures destroy crops, diminish ecosystems, put livelihoods in jeopardy, and accelerate the spread of fatal diseases. Climate change mixes population trends, migration, and greater urbanisation, putting the most vulnerable people at risk. Climate change is the most important impediment to achieving sustainable development through biodiversity conservation, and it threatens to impoverish millions of people. Species distributions have changed to higher altitudes at a median pace of 11.0 m and 16.9 km per decade to higher latitudes as a result of climate change. As a result, under migration scenarios, extinction rates for 1103 species range from 21–23% with unrestricted migration to 38–52% with no migration. When an environmental change happens on a period shorter than the plant’s life, a plastic phenotypic may emerge as a reaction. Phenotypic flexibility, on the other hand, might protect species against the enduring impacts of climate change. Climate change also has an impact on food security, especially in people and areas that rely on rainfed agriculture. Crops and plants have growth and yield limits that must be respected. As a result, agricultural productivity in Africa alone might plummet by more than 30% by 2050. Climate change is already wreaking havoc on people’s lives, especially the impoverished. Because rural people rely on natural resources, their livelihoods are jeopardised by frequent climate change. The impact of climate change on natural resource-based rural livelihoods is anticipated to be uneven and ecosystem resilience will be strengthened as a result of biodiversity conservation, and ecosystems will be better able to deliver critical functions in the face of increasing climate stresses. Moreover, as a consequence of global influence, the warming trend has changed significantly over the years. In addition to ensuring the livelihood security of rural people, a number of adaptation approaches species and ecosystems in a changing climate may be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdisa A, Dirba K, Muktar M (2017) Impacts of various ENSO phases on cereal crop productivity in the Upper Awash Basin, Central High Land of Ethiopia. Haramaya University, Ethiopia

    Google Scholar 

  • Abebe D, Randall B, Alemu M (2013) Community controlled forests, carbon sequestration and REDD+: some Evidence from Ethiopia. Environment for Development, Addis Ababa

    Google Scholar 

  • ADB and IFPRI (2009) Building climate resilience in the agricultural sector of Asia and the Pacific. Asian Development Bank, Manila

    Google Scholar 

  • Ajit DSK, Newaj R, Handa AK, Prasad R, Alam B, Rizvi RH, Gupta G, Pandey KK, Jain A, Uma (2013) Modelling analysis of potential carbon sequestration under existing agroforestry systems in three districts of Indo-Gangetic plains in India. Agrofor Syst 87(5):1129–1146

    Article  Google Scholar 

  • Ali A, Erenstein O (2017) Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag 16:183–194

    Article  Google Scholar 

  • Bajramovic S, Nikolic A, Butkovic J (2014) Agriculture and agricultural policy in Bosnia and Herzegovina. In: Volk T, Erjavec E, Mortensen K (eds) Agricultural policy and European integration in Southeastern Europe. Food and Agriculture Organization of the United Nations, Budapest, pp 73–94

    Google Scholar 

  • Barlow J, França F, Gardner T, Hicks C, Lennox GD, Berenguer E, Castello L et al (2018) The future of hyperdiverse tropical ecosystems. Nature 559:517–526. https://doi.org/10.1038/s41586-018-0301-1

    Article  ADS  CAS  PubMed  Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental C, Marshall TB et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57. https://doi.org/10.1038/nature09833

    Article  ADS  CAS  PubMed  Google Scholar 

  • Barrios E, Valencia V, Jonsson M, Brauman A, Hairiah K, Mortimer PE, Okubo S (2018) Contribution of Trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. Int J Biodiv Sci Ecosys Servi Manage 14:1–16. https://doi.org/10.1080/21513732.2017.1399167

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. https://doi.org/10.1111/j.1461-0248.2012.01764.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Bezabih M, DiFalco S, Mekonnen A (2014) On the impact of weather variability and climate change on agriculture, evidence from Ethiopia. Published by Sida Environment for Development and Resource for the Future, Addis Ababa

    Google Scholar 

  • Bland LM, Collen B, Orme CDL, Bielby J (2015) Predicting the conservation status of data-deficient species. Conserv Biol 29:250–259. https://doi.org/10.1111/cobi.12372

    Article  PubMed  Google Scholar 

  • Bommarco R, Vico G, Hallin S (2018) Exploiting ecosystem services in agriculture for increased food security. Global Food Security 17:57–63. https://doi.org/10.1016/j.gfs.2018.04.001

    Article  Google Scholar 

  • Brito-Morales I, Molinos J, Schoeman DS, Burrows MT, Poloczanska ES, Brown CJ et al (2018) Climate velocity can inform conservation in a warming world. Trends Ecol Evol 33:441–457. https://doi.org/10.1016/j.tree.2018.03.009

    Article  PubMed  Google Scholar 

  • Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460. https://doi.org/10.1016/j.tree.2008.03.011

    Article  PubMed  Google Scholar 

  • Brooks N, Adger WN, Kelly PM (2005) The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob Environ Chang 15:151–163

    Article  Google Scholar 

  • Brown B, Nuberg I, Llewellyn R (2018a) Constraints to the utilisation of conservation agriculture in Africa as perceived by agricultural extension service providers. Land Use Policy 73:331–340. https://doi.org/10.1016/j.landusepol.2018.02.009

    Article  Google Scholar 

  • Brown SE, Miller DC, Ordonez PJ, Baylis K (2018b) Evidence for the impacts of agroforestry on agricultural productivity, ecosystem services, and human well-being in high-income countries: a systematic map protocol. Environ Evid 7:24

    Article  Google Scholar 

  • Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C et al (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–655

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bustamante M, Robledo-Abad C, Harper R, Mbow C, Ravindranat NH, Sperling F, Haberl H, de Pinto AS, Smith P (2014) Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) Sector. Glob Chang Biol 20:3270–3290

    Article  ADS  PubMed  Google Scholar 

  • Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann PW, Almond REA, Baillie JEM et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. https://doi.org/10.1126/science.1187512

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. https://doi.org/10.1126/science.1205623

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chinnasamy P, Srivastava A (2021) Revival of traditional cascade tanks for achieving climate resilience in drylands of South India. Front Water 3:35. https://doi.org/10.3389/frwa.2021.639637

    Article  Google Scholar 

  • de Coninck H, Puig D (2015) Assessing climate change mitigation technology interventions by international institutions. Clim Chang 131:417–433

    Article  ADS  Google Scholar 

  • Dhyani S, Bartlett D, Kadaverugu R, Dasgupta R, Pujari P, Verma P (2020) Integrated climate sensitive restoration framework for transformative changes to sustainable land restoration. Restor Ecol 28:1026–1031

    Article  Google Scholar 

  • Doney SC, Ruckelshaus M, Duffy JE, Barry P, Chan F, English CA, Galindo HM et al (2012) Climate change impacts on marine ecosystems. Ann Rev Marine Sci 4:11–37. https://doi.org/10.1146/annurev-marine-041911-111611

    Article  ADS  Google Scholar 

  • Erasmus BFN, Van Jaarsveld AS, Chown SL, Kshatriya M, Wessels KJ (2002) Vulnerability of South African animal Taxa to climate change. Glob Chang Biol 8:679–693. https://doi.org/10.1046/j.1365-2486.2002.00502.x

    Article  ADS  Google Scholar 

  • FAO (2009) FAO: profile for climate change. Food and Agricultural Organization, Rome

    Google Scholar 

  • FAO (2010) Climate-Smart agriculture: policies, practices and financing for food security, adaptation and mitigation. Food and Agricultural Organization, Rome

    Google Scholar 

  • FAO (2019) The state of the world’s biodiversity for food and agriculture. In: Bélanger J, Pilling D (eds) FAO commission on genetic resources for food and agriculture assessments. FAO, Rome. 572 pp. http://www.fao.org/3/CA3129EN/CA3129EN.pdf

    Google Scholar 

  • FAO (2020) The state of food and agriculture. Overcoming water challenges in agriculture. Food and Agriculture Organization of the United Nations, Rome, pp 111–120

    Google Scholar 

  • Fardila D, Kelly LT, Moore JL, McCarth MA (2017) A systematic review reveals changes in where and how we have studied habitat loss and fragmentation over 20 years. Biol Conserv 212:30–138. https://doi.org/10.1016/j.biocon.2017.04.031

    Article  Google Scholar 

  • Groffman PM, Kareiva P, Carter S, Grimm NB, Lawler J, Mack M, Matzek V, Tallis H (2014) “Ecosystems, Biodiversity, and Ecosystem Services. Climate change impacts in the United States: the Third National Climate Assessment, J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S.” Glob Chang Res Prog 200–201

    Google Scholar 

  • Guo D, Desmet PG, Powrie LW (2017) Impact of the future changing climate on the Southern Africa biomes, and the importance of geology. J Geosci Environ Protec 5:1–9. https://doi.org/10.4236/gep.2017.57001

    Article  Google Scholar 

  • Gusli S, Sumeni S, Sabodin R, Muqfi IH, Nur M, Hairiah K, Useng D, van Noordwijk M (2020) Soil organic matter, mitigation of and adaptation to climate change in Cocoa–based agroforestry systems. Land 9:323

    Article  Google Scholar 

  • Harvey CA, Rakotobe ZL, Rao NS, Dave R, Razafimahatratra H, Rabarijohn RH, Rajaofara H, MacKinnon JL (2014) Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philos Trans Royal Soc B Biol Sci 369:20130089

    Article  Google Scholar 

  • Ignaciuk A, Mason-D’Croz D (2014) Modelling adaptation to climate change in agriculture, OECD Food, Agriculture and Fisheries Papers 70: 58.7. OECD Publishing, Paris

    Google Scholar 

  • Inder D, Ram A, Bhaskar S, Chaturvedi OP (2018) Role of agroforestry in current scenario. In: Agroforestry for climate resilience and rural livelihood. Scientific Publishers, Jodhpur, pp 1–10

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2020) Centre for climate and energy Solutions. 5th Assessment report- Kerstin Stendahl, Deputy Secretary, IPCC. Geneva, Switzerland

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2021) Climate Change. Impacts, Adaptation, and. Vulnerability. Mitigation of. Climate Change. 6th Assessment report- Kerstin Stendahl, Deputy Secretary, IPCC. Geneva, Switzerland

    Google Scholar 

  • International Union for Conservation of Nature (IUCN) (2016) The IUCN Red List of Threatened Species. IUCN, Gland

    Google Scholar 

  • IPCC (2007) Working Group III. Mitigation of Climate Change. Intergovernmental Panel on Climate Change. Fourth Assessment Report. Ed. by Metz, B. O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer. New York: Cambridge University Press.

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (2019) Summary for policymakers. In Climate change and land: an Ipcc special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems; Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, et al Eds.; IPCC Press Office: Geneva, p. 36.

    Google Scholar 

  • Keith DA, Akcakaya HR, Thuiller W, Midgley GF, Pearson RG, Phillips SJ, Regan HM, Araujo MB, Rebelo TG (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 4:560–563. https://doi.org/10.1098/rsbl.2008.0049

    Article  PubMed  PubMed Central  Google Scholar 

  • Khadri SFR, Pande C (2016) Ground water flow modeling for calibrating steady state using MODFLOW software: a case study of Mahesh River basin, India. Model Earth Syst Environ 2:39. https://doi.org/10.1007/s40808-015-0049-7

    Article  Google Scholar 

  • Kouadri S, Pande CB, Panneerselvam B et al (2022) Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Environ Sci Pollut Res 29:21067–21091. https://doi.org/10.1007/s11356-021-17084-3

    Article  CAS  Google Scholar 

  • Kumar A, Verma AK (2017) Biodiversity loss and its ecological impact in India. Int J Biol Sci 8(2):156–160

    MathSciNet  Google Scholar 

  • Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci 108:3465–3472. https://doi.org/10.1073/pnas.1100480108

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055. https://doi.org/10.1038/nature08649

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lowder SK, Skoet J, Raney T (2016) The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev 87:16–29

    Article  Google Scholar 

  • Matata AC, Adan A (2018) Causes of climate change and its impact in the multi-sectoral areas in africa-need for enhanced adaptation policies. Curr J App Sci Tech 27:1–10. https://doi.org/10.9734/CJAST

    Article  Google Scholar 

  • Matocha J, Schroth G, Hills T, Hole D (2012) Integrating climate change adaptation and mitigation through agroforestry and ecosystem conservation. In: Nair PKR, Garrity D (eds) Agroforestry—the future of global land use, Advances in Agroforestry. Springer, Dordrecht, pp 105–126, ISBN 978-94-007-4676-3

    Chapter  Google Scholar 

  • Midgley G, Bond WJ (2015) Bond future of african terrestrial biodiversity and ecosystems under anthropogenic climate change. Nat Clim Chang 5:823–829. https://doi.org/10.1038/nclimate2753

    Article  ADS  Google Scholar 

  • Midgley GF, Hannah L, Millar D, Rutherford MC, Powrie LW (2002) Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob Ecol Biogeogr 11:445–451. https://doi.org/10.1046/j.1466-822X.2002.00307.x

    Article  Google Scholar 

  • Montoya JM, Raffaelli D (2010) Climate change, biotic interactions and ecosystem services. Philos Trans R Soc B 365:2013–2018. https://doi.org/10.1098/rstb.2010.0114

    Article  Google Scholar 

  • Monzon J, Moyer-Horner L, Palama MB (2011) Climate change and species range dynamics in protected areas. Bioscience 61:752–761. https://doi.org/10.1525/bio.2011.61.10.5

    Article  Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How Many Species are There on Earth and in the Ocean? PLoS Biology 9:1–12. https://doi.org/10.1371/journal.pbio.1001127

  • Nye JA, Bundy A, Shackell NL, Friedland KD, Link JS (2010) Coherent trends in contiguous survey time-series of major ecological and commercial fish species in the Gulf of Maine Ecosystem. ICES J Mar Sci 67:26–40. https://doi.org/10.1093/icesjms/fsp216

    Article  Google Scholar 

  • OECD (2014) Climate change, water and agriculture: towards resilient agricultural and water systems. https://doi.org/10.1787/9789264209138-e

  • Orimoloye IR, Olusola AO, Belle JA et al (2022) Drought disaster monitoring and land use dynamics: identification of drought drivers using regression-based algorithms. Nat Hazards. https://doi.org/10.1007/s11069-022-05219-9

  • Paavola J (2004) Livelihoods, vulnerability and adaptation to climate change in the Morogoro Region, Tanzania. CSERGE Working Paper EDM 04-12. http://www.cserge.ac.uk/sites/default/files/edm_2004_12.pdf. Accessed on 22 Aug 2015

  • Pacifici M, Foden WB, Visconti P, Watson EM, Butchart HM, Kovacs KM et al (2015) Assessing species vulnerability to climate change. Nat Clim Chang 5:215–225. https://doi.org/10.1038/nclimate2448

    Article  ADS  Google Scholar 

  • Pande CB, Moharir KN (2021) Groundwater resources development and planning in the semi-arid region, vol 1. Springer, Cham, p XIV, 571. https://doi.org/10.1007/978-3-030-68124-1

    Book  Google Scholar 

  • Pande CB, Moharir KN, Panneerselvam B et al (2021a) Delineation of groundwater potential zones for sustainable development and planning using analytical hierarchy process (AHP), and MIF techniques. Appl Water Sci 11:186. https://doi.org/10.1007/s13201-021-01522-1

    Article  ADS  CAS  Google Scholar 

  • Pande CB, Moharir KN, Singh SK, Varade AM, Ahmed Elbeltagie SFR, Khadri PC (2021b) Estimation of crop and forest biomass resources in a semi-arid region using satellite data and GIS. J Saudi Soc Agric Sci 20(5):302–311

    Google Scholar 

  • Paudel Khatiwada S, Deng W, Paudel B, Khatiwada J, Zhang J, Su Y (2017) Household livelihood strategies and implication for poverty reduction in rural areas of central Nepal. Sustain For 9:612

    Article  Google Scholar 

  • Rahman HMT, Hickey GM (2019) What does autonomous adaptation to climate change have to teach public policy and planning about avoiding the risks of Maladaptation in Bangladesh? Front Environ Sci 7, 2

    Google Scholar 

  • Rosenzweig C, Parry ML (1994) Potential impact of climate-change on world food supply. Nature 367:133–138

    Article  ADS  Google Scholar 

  • Sahoo GR, Wani AM (2019) Multifunctional agroforestry systems in India for Livelihoods. Ann Hortic 12(2):139–149

    Article  Google Scholar 

  • Sahoo GR, Wani AM (2020) Effect of climate change on land degradation. Int J Innov Engin Manage Res SSRN Elsevier 09(12):483–494

    Google Scholar 

  • Sahoo GR, Wani AM, Kishore P, Vijay R (2019) Biodiversity conservation and climate change approach. Int Arch App Sci Technol 10(4):01–09. https://doi.org/10.15515/iaast.0976-4828.10.4.19

    Article  Google Scholar 

  • Sahoo GR, Wani AM, Satpathy B (2020a) Greening wastelands for environmental security through agroforestry. Int J Adv Res Sci Technol 7:2581–9429

    Google Scholar 

  • Sahoo GR, Wani AM, Sharma A (2020b) Enhancing food security through agroforestry for sustainability – a review. Int J Curr Microbiol App Sci Special Issue-11:2001–2020

    Google Scholar 

  • Sahoo GR, Wani AM, Prusty M, Ray M (2021) Effect of globalisation and climate change on forest- a review. Material Today Proceedings. Article in Press. https://doi.org/10.1016/j.matpr.2021.06.113.

  • Sharma DK, Mishra JK (2011) Impact of environmental changes on biodiversity. Indian J Sci Res 2(4):137–139

    CAS  Google Scholar 

  • Sonwa DJ, Dieye A, Mzouri EH, Majule A, Mugabe FT, Omolo N, Wouapi H, Obando J, Brooks N (2017) Drivers of climate risk in african agriculture. Clim Dev 9:383–398. https://doi.org/10.1080/17565529.2016.1167659

    Article  Google Scholar 

  • Swaminathan MS, Kesavan PC (2012) Agricultural research in an era of climate change. Agribiol Res 1(1):3–11

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN et al (2004) Extinction risk from climate change. Nature 427:145–148. https://doi.org/10.1038/nature02121

    Article  ADS  CAS  PubMed  Google Scholar 

  • Trew BT, Maclean IMD (2021) Vulnerability of global biodiversity hotspots to climate change. Glob Ecol Biogeogr 30:768–783

    Article  Google Scholar 

  • Trull N, Böhm M, Carr J (2018) Patterns and biases of climate change threats in the IUCN red list. Conserv Biol J Socie Conser Biol 32:135–147. https://doi.org/10.1111/cobi.13022

    Article  Google Scholar 

  • Tubiello FN, Rosenzweig C (2008) Developing climate change impact metrics for agriculture‖. Inte Assess J 8(1):165–184

    Google Scholar 

  • Verma AK (2016) Biodiversity: its different levels and values. Int J Environ Sci 7(2):143–145

    Google Scholar 

  • Verma AK (2017) Necessity of ecological balance for widespread biodiversity. Ind J Biol 4(2):158–160. https://doi.org/10.21088/ijb.2394.1391.4217.15

    Article  Google Scholar 

  • Verma AK (2019) Sustainable development and environmental ethics. Int J Environ Sci 10(1):1–5

    CAS  Google Scholar 

  • Walther GR (2010) Community and ecosystem responses to recent climate change. Philos Trans R Soc B Biol Sci 365:2019–2024. https://doi.org/10.1098/rstb.2010.0021

    Article  Google Scholar 

  • Whiteside JH, Ward PD (2011) Ammonoid diversity and disparity track episodes of chaotic carbon cycling during the early Mesozoic. Geology 39:99–102. https://doi.org/10.1130/G31401.1

    Article  ADS  CAS  Google Scholar 

  • Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482. https://doi.org/10.1890/070037

    Article  Google Scholar 

  • Wittig R, Konig K, Schmidt M, Szarzynski J (2007) A study of climate change and anthropogenic impacts in West Africa. Environ Sci Pollut Res 14:182–189

    Article  Google Scholar 

  • Workie TG, Debella HJ (2017) Climate change and its effects on vegetation phenology across ecoregions of Ethiopia. Glob Ecol Conser 13:e00366. https://doi.org/10.1016/j.gecco.2017.e00366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, G. et al. (2023). Impact of Climate Change on Livelihood Security and Biodiversity – Issues and Mitigation Strategies. In: Pande, C.B., Moharir, K.N., Singh, S.K., Pham, Q.B., Elbeltagi, A. (eds) Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-031-19059-9_1

Download citation

Publish with us

Policies and ethics