Abstract
This chapter provides an extensive dive into AI research and innovation in industry today. We begin by considering the most important source of AI innovation outside of academia: Big Tech research labs. While it is not always evident who should, and should not, be included under the umbrella of “Big Tech,” some candidates are fairly apparent, including Apple, Meta, and Alphabet. These companies and their products have had an outsize impact on smartphones (and other similar devices, as well as enabling services such as digital payment systems and media), social media, and Web search. At the same time, it has become evident over the last several years that companies not traditionally or currently classed as Big Tech companies, such as Tesla, but also large defense companies, such as Lockheed Martin, have also made important innovations in various subfields of AI. We briefly comment on these, before switching our discussion to the Chinese “Big Tech.” Finally, we comment on the important and disruptive role that small- and medium-sized enterprises, including startups, play in fostering and commercializing innovation in emerging technologies such as AI. We close the chapter with a case study on neural language models that have revolutionized applications in natural language processing and potential ethical concerns.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Needless to say, Netflix has been unceremoniously dropped from the club in this new acronym.
- 2.
Indeed, in early 2019, Apple, Amazon, Google, and Zigbee Alliance announced a partnership to make smart home products more compatible, not dissimilar to how standards are in place (sometimes due to regulation) for other longstanding technologies, such as cars and refrigerators.
- 3.
Similar to the Google search engine, and other such systems, all the details behind the architecture of such complex products and services are not known and must be extrapolated given information such as publications, patents, public interviews with (and presentations by) Alexa researchers, and journalistic reporting, as well as our current knowledge about the state-of-the-art in fields such as natural language processing.
- 4.
Discerning technical readers will recognize that this is just one of several graph-theoretic fields that are prominent in AI, where graphs have always played an important role. Within our own group, and others, these fields can often intersect and may also involve other disciplines. A particularly good example is network science, which is mature enough by now that several books have been written on it [58, 63]. Similar to KGs, network science can also be applied to many structured problems and domains [34, 38, 39, 47, 74].
- 5.
In a sign of where the future was eventually headed, Netflix’s initial foray into the subscription-based content model (1999) far predates the streaming, although subscriptions underpin the revenue of many streaming services today. The subscription model was discontinued only a few months after start, but was (obviously) brought back later.
References
Accenture helps Metro de Madrid balance energy efficiency and passenger comfort with AI-based self-learning ventilation system (2019). URL https://newsroom.accenture.com/news/accenture-helps-metro-de-madrid-balance-energy-efficiency-and-passenger-comfort-with-ai-based-self-learning-ventilation-system.htm
Abid, A., Farooqi, M., Zou, J.: Persistent anti-Muslim bias in large language models. In: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 298–306 (2021)
Ahlgren, L.: How airbus and Boeing are using artificial intelligence to advance autonomous flight? (2021). URL https://simpleflying.com/airbus-boeing-artificial-intelligence-flight/
Allyn, B.: Amazon’s Alexa could soon speak in a dead relative’s voice, making some feel uneasy (2022). URL https://www.npr.org/2022/06/23/1107079194/amazon-alexa-dead-relatives-voice
Bailey, J.: Pilotless, hydrogen-powered planes could be in the UK within a decade (2021). URL https://simpleflying.com/pilotless-hydrogen-regional-planes/
Bino, E.: Is Israel the next silicon valley? (2021). URL https://www.forbes.com/sites/eyalbino/2021/10/21/is-israel-the-next-silicon-valley/?sh=26155009177f
Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language models are few-shot learners. CoRR abs/2005.14165 (2020). URL https://arxiv.org/abs/2005.14165
Burke, Q., Bailey, C., Lyon, L.A., Green, E.: Understanding the software development industry’s perspective on coding boot camps versus traditional 4-year colleges. In: Proceedings of the 49th ACM Technical Symposium on Computer Science Education, pp. 503–508 (2018)
Das, D., Sahoo, L., Datta, S.: A survey on recommendation system. International Journal of Computer Applications 160(7) (2017)
Dau, A., Salim, N.: Recommendation system based on deep learning methods: a systematic review and new directions. Artificial Intelligence Review 53(4), 2709–2748 (2020)
Davis, E., Marcus, G.: Commonsense reasoning and commonsense knowledge in artificial intelligence. Communications of the ACM 58(9), 92–103 (2015)
DeBord, M.: Everyone who thinks tesla is a tech company is completely wrong – tesla should aspire to be Honda. (2021). URL https://www.businessinsider.com/why-tesla-is-not-a-tech-company-2019-2
Foundation, N.S.: About America’s Seed Fund powered by NSF (2022). URL https://seedfund.nsf.gov/about/
Garamone, J.: Joint warfighting cloud capability award planned for December. (2022). URL https://www.defense.gov/News/News-Stories/Article/Article/2984496/joint-warfighting-cloud-capability-award-planned-for-december/
Getoor, L., Machanavajjhala, A.: Entity resolution: theory, practice & open challenges. Proceedings of the VLDB Endowment 5(12), 2018–2019 (2012)
Gheini, M., Kejriwal, M.: Unsupervised product entity resolution using graph representation learning. In: J. Degenhardt, S. Kallumadi, U. Porwal, A. Trotman (eds.) Proceedings of the SIGIR 2019 Workshop on eCommerce, co-located with the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, eCom@SIGIR 2019, Paris, France, July 25, 2019, CEUR Workshop Proceedings, vol. 2410. CEUR-WS.org (2019). URL http://ceur-ws.org/Vol-2410/paper26.pdf
Greenberg, A.: How a ‘deviant’ philosopher built Palantir, a CIA-funded data-mining juggernaut (2013). URL https://www.forbes.com/sites/andygreenberg/2013/08/14/agent-of-intelligence-how-a-deviant-philosopher-built-palantir-a-cia-funded-data-mining-juggernaut/?sh=4ed155947785
Gu, Y., Kejriwal, M.: Unsupervised hashtag retrieval and visualization for crisis informatics. CoRR abs/1801.05906 (2018). URL http://arxiv.org/abs/1801.05906
Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu, C., Xu, Y., et al.: A survey on vision transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)
Hundman, K., Gowda, T., Kejriwal, M., Boecking, B.: Always lurking: Understanding and mitigating bias in online human trafficking detection. CoRR abs/1712.00846 (2017). URL http://arxiv.org/abs/1712.00846
Hundman, K., Gowda, T., Kejriwal, M., Boecking, B.: Always lurking: Understanding and mitigating bias in online human trafficking detection. In: J. Furman, G.E. Marchant, H. Price, F. Rossi (eds.) Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, AIES 2018, New Orleans, LA, USA, February 02–03, 2018, pp. 137–143. ACM (2018). DOI URL https://doi.org/10.1145/3278721.3278782
Islam, Q.N.: Mastering PyCharm. Packt Publishing Ltd (2015)
Kahn, J.: Lessons from A.I.S. rare pandemic success (2021)
Kapoor, R., Kejriwal, M., Szekely, P.A.: Using contexts and constraints for improved geotagging of human trafficking webpages. In: P. Bouros, M. Sarwat (eds.) Proceedings of the Fourth International ACM Workshop on Managing and Mining Enriched Geo-Spatial Data, Chicago, IL, USA, May 14, 2017, pp. 3:1–3:6. ACM (2017). DOI URL https://doi.org/10.1145/3080546.3080547
Kapoor, R., Kejriwal, M., Szekely, P.A.: Using contexts and constraints for improved geotagging of human trafficking webpages. CoRR abs/1704.05569 (2017). URL http://arxiv.org/abs/1704.05569
Kejriwal, M.: Disjunctive normal form schemes for heterogeneous attributed graphs. CoRR abs/1605.00686 (2016). URL http://arxiv.org/abs/1605.00686
Kejriwal, M.: Populating a linked data entity name system. AI Matters 3(2), 22–23 (2017). DOI URL https://doi.org/10.1145/3098888.3098897
Kejriwal, M.: Populating a Linked Data Entity Name System - A Big Data Solution to Unsupervised Instance Matching, Studies on the Semantic Web, vol. 27. IOS Press (2017). DOI URL https://doi.org/10.3233/978-1-61499-692-7-i
Kejriwal, M.: Predicting role relevance with minimal domain expertise in a financial domain. CoRR abs/1704.05571 (2017). URL http://arxiv.org/abs/1704.05571
Kejriwal, M.: Predicting role relevance with minimal domain expertise in a financial domain. In: Proceedings of the 3rd International Workshop on Data Science for Macro-Modeling with Financial and Economic Datasets, DSMM@SIGMOD 2017, Chicago, IL, USA, May 14, 2017, pp. 10:1–10:2. ACM (2017). DOI URL https://doi.org/10.1145/3077240.3077249
Kejriwal, M.: Domain-specific knowledge graph construction. Springer (2019)
Kejriwal, M.: Unsupervised DNF blocking for efficient linking of knowledge graphs and tables. Inf. 12(3), 134 (2021). DOI URL https://doi.org/10.3390/info12030134
Kejriwal, M.: Knowledge graphs: A practical review of the research landscape. Inf. 13(4), 161 (2022). DOI URL https://doi.org/10.3390/info13040161
Kejriwal, M., Dang, A.: Structural studies of the global networks exposed in the Panama papers. Appl. Netw. Sci. 5(1), 63 (2020). DOI URL https://doi.org/10.1007/s41109-020-00313-y
Kejriwal, M., Ding, J., Shao, R., Kumar, A., Szekely, P.A.: Flagit: A system for minimally supervised human trafficking indicator mining. CoRR abs/1712.03086 (2017). URL http://arxiv.org/abs/1712.03086
Kejriwal, M., Gilley, D., Szekely, P.A., Crisman, J.: THOR: text-enabled analytics for humanitarian operations. In: P. Champin, F. Gandon, M. Lalmas, P.G. Ipeirotis (eds.) Companion of the Web Conference 2018, WWW 2018, Lyon, France, April 23–27, 2018, pp. 147–150. ACM (2018). DOI URL https://doi.org/10.1145/3184558.3186965
Kejriwal, M., Gu, Y.: A pipeline for post-crisis Twitter data acquisition. CoRR abs/1801.05881 (2018). URL http://arxiv.org/abs/1801.05881
Kejriwal, M., Gu, Y.: Network-theoretic modeling of complex activity using UK online sex advertisements. Appl. Netw. Sci. 5(1), 30 (2020). DOI URL https://doi.org/10.1007/s41109-020-00275-1
Kejriwal, M., Kapoor, R.: Network-theoretic information extraction quality assessment in the human trafficking domain. Appl. Netw. Sci. 4(1), 44:1–44:26 (2019). DOI URL https://doi.org/10.1007/s41109-019-0154-z
Kejriwal, M., Miranker, D.P.: Experience: Type alignment on DBpedia and Freebase. CoRR abs/1608.04442 (2016). URL http://arxiv.org/abs/1608.04442
Kejriwal, M., Miranker, D.P.: Local, domain-independent heuristics for the FEIII challenge: Lessons and observations. In: Proceedings of the Second International Workshop on Data Science for Macro-Modeling, DSMM@SIGMOD 2016, San Francisco, CA, USA, June 26–July 1, 2016, pp. 17:1–17:2. ACM (2016). DOI URL https://doi.org/10.1145/2951894.2951911
Kejriwal, M., Miranker, D.P.: Self-contained NoSQL resources for cross-domain RDF. CoRR abs/1608.04437 (2016). URL http://arxiv.org/abs/1608.04437
Kejriwal, M., Peng, J., Zhang, H., Szekely, P.A.: Structured event entity resolution in humanitarian domains. In: D. Vrandecic, K. Bontcheva, M.C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L. Kaffee, E. Simperl (eds.) The Semantic Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey, CA, USA, October 8–12, 2018, Proceedings, Part I, Lecture Notes in Computer Science, vol. 11136, pp. 233–249. Springer (2018). DOI URL https://doi.org/10.1007/978-3-030-00671-6_14
Kejriwal, M., Schellenberg, T., Szekely, P.A.: A semantic search engine for investigating human trafficking. In: N. Nikitina, D. Song, A. Fokoue, P. Haase (eds.) Proceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks co-located with 16th International Semantic Web Conference (ISWC 2017), Vienna, Austria, October 23rd - to - 25th, 2017, CEUR Workshop Proceedings, vol. 1963. CEUR-WS.org (2017). URL http://ceur-ws.org/Vol-1963/paper613.pdf
Kejriwal, M., Sequeda, J.F., Lopez, V.: Knowledge graphs: Construction, management and querying. Semantic Web 10(6), 961–962 (2019). DOI URL https://doi.org/10.3233/SW-190370
Kejriwal, M., Shen, K.: Do fine-tuned commonsense language models really generalize? CoRR abs/2011.09159 (2020). URL https://arxiv.org/abs/2011.09159
Kejriwal, M., Shen, K.: Can scale-free network growth with triad formation capture simplicial complex distributions in real communication networks? CoRR abs/2203.06491 (2022). DOI URL https://doi.org/10.48550/arXiv.2203.06491
Kejriwal, M., Shen, K., Ni, C., Torzec, N.: An evaluation and annotation methodology for product category matching in e-commerce. Comput. Ind. 131, 103497 (2021). DOI URL https://doi.org/10.1016/j.compind.2021.103497
Kejriwal, M., Shen, K., Ni, C., Torzec, N.: Transfer-based taxonomy induction over concept labels. Eng. Appl. Artif. Intell. 108, 104548 (2022). DOI URL https://doi.org/10.1016/j.engappai.2021.104548
Kejriwal, M., Szekely, P.: Knowledge graphs for social good: An entity-centric search engine for the human trafficking domain. IEEE Transactions on Big Data (2017)
Kejriwal, M., Szekely, P.A.: Information extraction in illicit domains. CoRR abs/1703.03097 (2017). URL http://arxiv.org/abs/1703.03097
Kejriwal, M., Szekely, P.A.: Information extraction in illicit web domains. In: R. Barrett, R. Cummings, E. Agichtein, E. Gabrilovich (eds.) Proceedings of the 26th International Conference on World Wide Web, WWW 2017, Perth, Australia, April 3–7, 2017, pp. 997–1006. ACM (2017). DOI URL https://doi.org/10.1145/3038912.3052642
Kejriwal, M., Szekely, P.A.: Neural embeddings for populated geonames locations. In: C. d’Amato, M. Fernández, V.A.M. Tamma, F. Lécué, P. Cudré-Mauroux, J.F. Sequeda, C. Lange, J. Heflin (eds.) The Semantic Web - ISWC 2017 - 16th International Semantic Web Conference, Vienna, Austria, October 21–25, 2017, Proceedings, Part II, Lecture Notes in Computer Science, vol. 10588, pp. 139–146. Springer (2017). DOI URL https://doi.org/10.1007/978-3-319-68204-4_14
Kejriwal, M., Szekely, P.A.: Constructing domain-specific search engines with no programming. In: S.A. McIlraith, K.Q. Weinberger (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018, pp. 8204–8205. AAAI Press (2018). URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16990
Kejriwal, M., Szekely, P.A.: Technology-assisted investigative search: A case study from an illicit domain. In: R.L. Mandryk, M. Hancock, M. Perry, A.L. Cox (eds.) Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, Montreal, QC, Canada, April 21–26, 2018. ACM (2018). DOI URL https://doi.org/10.1145/3170427.3174364
Kejriwal, M., Szekely, P.A., Troncy, R. (eds.): Proceedings of the 10th International Conference on Knowledge Capture, K-CAP 2019, Marina del Rey, CA, USA, November 19–21, 2019. ACM (2019). DOI URL https://doi.org/10.1145/3360901
Koren, Y., Rendle, S., Bell, R.: Advances in collaborative filtering. Recommender systems handbook pp. 91–142 (2022)
Lewis, T.G.: Network science: Theory and applications. John Wiley & Sons (2011)
Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Lago, A.D., et al.: Competition-level code generation with AlphaCode. arXiv preprint arXiv:2203.07814 (2022)
Lu, Y.: Duke energy used computer vision and robots to cut costs by $74m (2021). URL https://venturebeat.com/2021/07/18/duke-energy-used-computer-vision-and-robots-to-cut-costs-by-74m/
Matloff, N., et al.: Immigration and the tech industry: As a labour shortage remedy, for innovation, or for cost savings? Migration Letters 10(2), 210–227 (2013)
Nadeem, M., Bethke, A., Reddy, S.: Stereoset: Measuring stereotypical bias in pretrained language models. arXiv preprint arXiv:2004.09456 (2020)
Newman, M.: Networks. Oxford University Press (2018)
Peng, D., Zheng, S., Li, Y., Ke, G., He, D., Liu, T.Y.: How could neural networks understand programs? In: International Conference on Machine Learning, pp. 8476–8486. PMLR (2021)
Richardson, G.: Wells Fargo: Personalizing real-time conversations with 70 million customers (2022). URL https://www.pega.com/customers/wells-fargo-customer-decision-hub
Ruff, K.M., Pappu, R.V.: AlphaFold and implications for intrinsically disordered proteins. Journal of Molecular Biology 433(20), 167208 (2021)
Santos, H., Shen, K., Mulvehill, A.M., Razeghi, Y., McGuinness, D.L., Kejriwal, M.: A theoretically grounded benchmark for evaluating machine commonsense. CoRR abs/2203.12184 (2022). DOI URL https://doi.org/10.48550/arXiv.2203.12184
Shen, K., Kejriwal, M.: A data-driven study of commonsense knowledge using the ConceptNet knowledge base. CoRR abs/2011.14084 (2020). URL https://arxiv.org/abs/2011.14084
Shen, K., Kejriwal, M.: On the generalization abilities of fine-tuned commonsense language representation models. In: M. Bramer, R. Ellis (eds.) Artificial Intelligence XXXVIII - 41st SGAI International Conference on Artificial Intelligence, AI 2021, Cambridge, UK, December 14–16, 2021, Proceedings, Lecture Notes in Computer Science, vol. 13101, pp. 3–16. Springer (2021). DOI URL https://doi.org/10.1007/978-3-030-91100-3_1
Smith, B.: How TikTok reads your mind (2021). URL https://www.nytimes.com/2021/12/05/business/media/tiktok-algorithm.html
Snelgrove, G.: Boeing’s flying taxi - what’s the latest? (2020). URL https://simpleflying.com/boeing-flying-taxi/
Staff, W.: Inside TikTok’s algorithm: A WSJ video investigation (2021). URL https://www.wsj.com/articles/tiktok-algorithm-video-investigation-11626877477
Szekely, P.A., Kejriwal, M.: Domain-specific insight graphs (DIG). In: P. Champin, F. Gandon, M. Lalmas, P.G. Ipeirotis (eds.) Companion of the Web Conference 2018, WWW 2018, Lyon, France, April 23-27, 2018, pp. 433–434. ACM (2018). DOI URL https://doi.org/10.1145/3184558.3186203
Tang, J., Vazirgiannis, M., Dong, Y., Malliaros, F.D., Cochez, M., Kejriwal, M., Rettinger, A.: BigNet 2018 Chairs’ welcome & organization. In: P. Champin, F. Gandon, M. Lalmas, P.G. Ipeirotis (eds.) Companion of the Web Conference 2018, WWW 2018, Lyon, France, April 23–27, 2018, pp. 943–944. ACM (2018). DOI URL https://doi.org/10.1145/3184558.3192293
Toews, R.: A wave of billion-dollar language AI startups is coming (2022). URL https://www.forbes.com/sites/robtoews/2022/03/27/a-wave-of-billion-dollar-language-ai-startups-is-coming/?sh=1761d1572b14
Trinh, T.H., Le, Q.V.: A simple method for commonsense reasoning. arXiv preprint arXiv:1806.02847 (2018)
Truby, J.: Decarbonizing bitcoin: Law and policy choices for reducing the energy consumption of blockchain technologies and digital currencies. Energy Research & Social Science 44, 399–410 (2018)
Williams, T., Scheutz, M.: Power: A domain-independent algorithm for probabilistic, open-world entity resolution. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1230–1235. IEEE (2015)
Zhang, T., Subburathinam, A., Shi, G., Huang, L., Lu, D., Pan, X., Li, M., Zhang, B., Wang, Q., Whitehead, S., Ji, H., Zareian, A., Akbari, H., Chen, B., Zhong, R., Shao, S., Allaway, E., Chang, S., McKeown, K.R., Li, D., Huang, X., Sun, K., Peng, X., Gabbard, R., Freedman, M., Kejriwal, M., Nevatia, R., Szekely, P.A., Kumar, T.K.S., Sadeghian, A., Bergami, G., Dutta, S., Rodríguez, M.E., Wang, D.Z.: GAIA - A multi-media multi-lingual knowledge extraction and hypothesis generation system. In: Proceedings of the 2018 Text Analysis Conference, TAC 2018, Gaithersburg, Maryland, USA, November 13–14, 2018. NIST (2018). URL https://tac.nist.gov/publications/2018/participant.papers/TAC2018.GAIA.proceedings.pdf
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kejriwal, M. (2023). AI in Industry Today. In: Artificial Intelligence for Industries of the Future. Future of Business and Finance. Springer, Cham. https://doi.org/10.1007/978-3-031-19039-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-19039-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19038-4
Online ISBN: 978-3-031-19039-1
eBook Packages: Computer ScienceComputer Science (R0)