Skip to main content

Part of the book series: Future of Business and Finance ((FBF))

  • 1401 Accesses

Abstract

This chapter provides an extensive dive into AI research and innovation in industry today. We begin by considering the most important source of AI innovation outside of academia: Big Tech research labs. While it is not always evident who should, and should not, be included under the umbrella of “Big Tech,” some candidates are fairly apparent, including Apple, Meta, and Alphabet. These companies and their products have had an outsize impact on smartphones (and other similar devices, as well as enabling services such as digital payment systems and media), social media, and Web search. At the same time, it has become evident over the last several years that companies not traditionally or currently classed as Big Tech companies, such as Tesla, but also large defense companies, such as Lockheed Martin, have also made important innovations in various subfields of AI. We briefly comment on these, before switching our discussion to the Chinese “Big Tech.” Finally, we comment on the important and disruptive role that small- and medium-sized enterprises, including startups, play in fostering and commercializing innovation in emerging technologies such as AI. We close the chapter with a case study on neural language models that have revolutionized applications in natural language processing and potential ethical concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Needless to say, Netflix has been unceremoniously dropped from the club in this new acronym.

  2. 2.

    Indeed, in early 2019, Apple, Amazon, Google, and Zigbee Alliance announced a partnership to make smart home products more compatible, not dissimilar to how standards are in place (sometimes due to regulation) for other longstanding technologies, such as cars and refrigerators.

  3. 3.

    Similar to the Google search engine, and other such systems, all the details behind the architecture of such complex products and services are not known and must be extrapolated given information such as publications, patents, public interviews with (and presentations by) Alexa researchers, and journalistic reporting, as well as our current knowledge about the state-of-the-art in fields such as natural language processing.

  4. 4.

    Discerning technical readers will recognize that this is just one of several graph-theoretic fields that are prominent in AI, where graphs have always played an important role. Within our own group, and others, these fields can often intersect and may also involve other disciplines. A particularly good example is network science, which is mature enough by now that several books have been written on it [58, 63]. Similar to KGs, network science can also be applied to many structured problems and domains [34, 38, 39, 47, 74].

  5. 5.

    In a sign of where the future was eventually headed, Netflix’s initial foray into the subscription-based content model (1999) far predates the streaming, although subscriptions underpin the revenue of many streaming services today. The subscription model was discontinued only a few months after start, but was (obviously) brought back later.

References

  1. Accenture helps Metro de Madrid balance energy efficiency and passenger comfort with AI-based self-learning ventilation system (2019). URL https://newsroom.accenture.com/news/accenture-helps-metro-de-madrid-balance-energy-efficiency-and-passenger-comfort-with-ai-based-self-learning-ventilation-system.htm

  2. Abid, A., Farooqi, M., Zou, J.: Persistent anti-Muslim bias in large language models. In: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 298–306 (2021)

    Google Scholar 

  3. Ahlgren, L.: How airbus and Boeing are using artificial intelligence to advance autonomous flight? (2021). URL https://simpleflying.com/airbus-boeing-artificial-intelligence-flight/

  4. Allyn, B.: Amazon’s Alexa could soon speak in a dead relative’s voice, making some feel uneasy (2022). URL https://www.npr.org/2022/06/23/1107079194/amazon-alexa-dead-relatives-voice

  5. Bailey, J.: Pilotless, hydrogen-powered planes could be in the UK within a decade (2021). URL https://simpleflying.com/pilotless-hydrogen-regional-planes/

  6. Bino, E.: Is Israel the next silicon valley? (2021). URL https://www.forbes.com/sites/eyalbino/2021/10/21/is-israel-the-next-silicon-valley/?sh=26155009177f

  7. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language models are few-shot learners. CoRR abs/2005.14165 (2020). URL https://arxiv.org/abs/2005.14165

  8. Burke, Q., Bailey, C., Lyon, L.A., Green, E.: Understanding the software development industry’s perspective on coding boot camps versus traditional 4-year colleges. In: Proceedings of the 49th ACM Technical Symposium on Computer Science Education, pp. 503–508 (2018)

    Google Scholar 

  9. Das, D., Sahoo, L., Datta, S.: A survey on recommendation system. International Journal of Computer Applications 160(7) (2017)

    Google Scholar 

  10. Dau, A., Salim, N.: Recommendation system based on deep learning methods: a systematic review and new directions. Artificial Intelligence Review 53(4), 2709–2748 (2020)

    Article  Google Scholar 

  11. Davis, E., Marcus, G.: Commonsense reasoning and commonsense knowledge in artificial intelligence. Communications of the ACM 58(9), 92–103 (2015)

    Article  Google Scholar 

  12. DeBord, M.: Everyone who thinks tesla is a tech company is completely wrong – tesla should aspire to be Honda. (2021). URL https://www.businessinsider.com/why-tesla-is-not-a-tech-company-2019-2

  13. Foundation, N.S.: About America’s Seed Fund powered by NSF (2022). URL https://seedfund.nsf.gov/about/

  14. Garamone, J.: Joint warfighting cloud capability award planned for December. (2022). URL https://www.defense.gov/News/News-Stories/Article/Article/2984496/joint-warfighting-cloud-capability-award-planned-for-december/

  15. Getoor, L., Machanavajjhala, A.: Entity resolution: theory, practice & open challenges. Proceedings of the VLDB Endowment 5(12), 2018–2019 (2012)

    Article  Google Scholar 

  16. Gheini, M., Kejriwal, M.: Unsupervised product entity resolution using graph representation learning. In: J. Degenhardt, S. Kallumadi, U. Porwal, A. Trotman (eds.) Proceedings of the SIGIR 2019 Workshop on eCommerce, co-located with the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, eCom@SIGIR 2019, Paris, France, July 25, 2019, CEUR Workshop Proceedings, vol. 2410. CEUR-WS.org (2019). URL http://ceur-ws.org/Vol-2410/paper26.pdf

  17. Greenberg, A.: How a ‘deviant’ philosopher built Palantir, a CIA-funded data-mining juggernaut (2013). URL https://www.forbes.com/sites/andygreenberg/2013/08/14/agent-of-intelligence-how-a-deviant-philosopher-built-palantir-a-cia-funded-data-mining-juggernaut/?sh=4ed155947785

  18. Gu, Y., Kejriwal, M.: Unsupervised hashtag retrieval and visualization for crisis informatics. CoRR abs/1801.05906 (2018). URL http://arxiv.org/abs/1801.05906

  19. Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu, C., Xu, Y., et al.: A survey on vision transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)

    Google Scholar 

  20. Hundman, K., Gowda, T., Kejriwal, M., Boecking, B.: Always lurking: Understanding and mitigating bias in online human trafficking detection. CoRR abs/1712.00846 (2017). URL http://arxiv.org/abs/1712.00846

  21. Hundman, K., Gowda, T., Kejriwal, M., Boecking, B.: Always lurking: Understanding and mitigating bias in online human trafficking detection. In: J. Furman, G.E. Marchant, H. Price, F. Rossi (eds.) Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, AIES 2018, New Orleans, LA, USA, February 02–03, 2018, pp. 137–143. ACM (2018). DOI URL https://doi.org/10.1145/3278721.3278782

  22. Islam, Q.N.: Mastering PyCharm. Packt Publishing Ltd (2015)

    Google Scholar 

  23. Kahn, J.: Lessons from A.I.S. rare pandemic success (2021)

    Google Scholar 

  24. Kapoor, R., Kejriwal, M., Szekely, P.A.: Using contexts and constraints for improved geotagging of human trafficking webpages. In: P. Bouros, M. Sarwat (eds.) Proceedings of the Fourth International ACM Workshop on Managing and Mining Enriched Geo-Spatial Data, Chicago, IL, USA, May 14, 2017, pp. 3:1–3:6. ACM (2017). DOI URL https://doi.org/10.1145/3080546.3080547

  25. Kapoor, R., Kejriwal, M., Szekely, P.A.: Using contexts and constraints for improved geotagging of human trafficking webpages. CoRR abs/1704.05569 (2017). URL http://arxiv.org/abs/1704.05569

  26. Kejriwal, M.: Disjunctive normal form schemes for heterogeneous attributed graphs. CoRR abs/1605.00686 (2016). URL http://arxiv.org/abs/1605.00686

  27. Kejriwal, M.: Populating a linked data entity name system. AI Matters 3(2), 22–23 (2017). DOI URL https://doi.org/10.1145/3098888.3098897

  28. Kejriwal, M.: Populating a Linked Data Entity Name System - A Big Data Solution to Unsupervised Instance Matching, Studies on the Semantic Web, vol. 27. IOS Press (2017). DOI URL https://doi.org/10.3233/978-1-61499-692-7-i

  29. Kejriwal, M.: Predicting role relevance with minimal domain expertise in a financial domain. CoRR abs/1704.05571 (2017). URL http://arxiv.org/abs/1704.05571

  30. Kejriwal, M.: Predicting role relevance with minimal domain expertise in a financial domain. In: Proceedings of the 3rd International Workshop on Data Science for Macro-Modeling with Financial and Economic Datasets, DSMM@SIGMOD 2017, Chicago, IL, USA, May 14, 2017, pp. 10:1–10:2. ACM (2017). DOI URL https://doi.org/10.1145/3077240.3077249

  31. Kejriwal, M.: Domain-specific knowledge graph construction. Springer (2019)

    Google Scholar 

  32. Kejriwal, M.: Unsupervised DNF blocking for efficient linking of knowledge graphs and tables. Inf. 12(3), 134 (2021). DOI URL https://doi.org/10.3390/info12030134

  33. Kejriwal, M.: Knowledge graphs: A practical review of the research landscape. Inf. 13(4), 161 (2022). DOI URL https://doi.org/10.3390/info13040161

  34. Kejriwal, M., Dang, A.: Structural studies of the global networks exposed in the Panama papers. Appl. Netw. Sci. 5(1), 63 (2020). DOI URL https://doi.org/10.1007/s41109-020-00313-y

  35. Kejriwal, M., Ding, J., Shao, R., Kumar, A., Szekely, P.A.: Flagit: A system for minimally supervised human trafficking indicator mining. CoRR abs/1712.03086 (2017). URL http://arxiv.org/abs/1712.03086

  36. Kejriwal, M., Gilley, D., Szekely, P.A., Crisman, J.: THOR: text-enabled analytics for humanitarian operations. In: P. Champin, F. Gandon, M. Lalmas, P.G. Ipeirotis (eds.) Companion of the Web Conference 2018, WWW 2018, Lyon, France, April 23–27, 2018, pp. 147–150. ACM (2018). DOI URL https://doi.org/10.1145/3184558.3186965

  37. Kejriwal, M., Gu, Y.: A pipeline for post-crisis Twitter data acquisition. CoRR abs/1801.05881 (2018). URL http://arxiv.org/abs/1801.05881

  38. Kejriwal, M., Gu, Y.: Network-theoretic modeling of complex activity using UK online sex advertisements. Appl. Netw. Sci. 5(1), 30 (2020). DOI URL https://doi.org/10.1007/s41109-020-00275-1

  39. Kejriwal, M., Kapoor, R.: Network-theoretic information extraction quality assessment in the human trafficking domain. Appl. Netw. Sci. 4(1), 44:1–44:26 (2019). DOI URL https://doi.org/10.1007/s41109-019-0154-z

  40. Kejriwal, M., Miranker, D.P.: Experience: Type alignment on DBpedia and Freebase. CoRR abs/1608.04442 (2016). URL http://arxiv.org/abs/1608.04442

  41. Kejriwal, M., Miranker, D.P.: Local, domain-independent heuristics for the FEIII challenge: Lessons and observations. In: Proceedings of the Second International Workshop on Data Science for Macro-Modeling, DSMM@SIGMOD 2016, San Francisco, CA, USA, June 26–July 1, 2016, pp. 17:1–17:2. ACM (2016). DOI URL https://doi.org/10.1145/2951894.2951911

  42. Kejriwal, M., Miranker, D.P.: Self-contained NoSQL resources for cross-domain RDF. CoRR abs/1608.04437 (2016). URL http://arxiv.org/abs/1608.04437

  43. Kejriwal, M., Peng, J., Zhang, H., Szekely, P.A.: Structured event entity resolution in humanitarian domains. In: D. Vrandecic, K. Bontcheva, M.C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L. Kaffee, E. Simperl (eds.) The Semantic Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey, CA, USA, October 8–12, 2018, Proceedings, Part I, Lecture Notes in Computer Science, vol. 11136, pp. 233–249. Springer (2018). DOI URL https://doi.org/10.1007/978-3-030-00671-6_14

  44. Kejriwal, M., Schellenberg, T., Szekely, P.A.: A semantic search engine for investigating human trafficking. In: N. Nikitina, D. Song, A. Fokoue, P. Haase (eds.) Proceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks co-located with 16th International Semantic Web Conference (ISWC 2017), Vienna, Austria, October 23rd - to - 25th, 2017, CEUR Workshop Proceedings, vol. 1963. CEUR-WS.org (2017). URL http://ceur-ws.org/Vol-1963/paper613.pdf

  45. Kejriwal, M., Sequeda, J.F., Lopez, V.: Knowledge graphs: Construction, management and querying. Semantic Web 10(6), 961–962 (2019). DOI URL https://doi.org/10.3233/SW-190370

  46. Kejriwal, M., Shen, K.: Do fine-tuned commonsense language models really generalize? CoRR abs/2011.09159 (2020). URL https://arxiv.org/abs/2011.09159

  47. Kejriwal, M., Shen, K.: Can scale-free network growth with triad formation capture simplicial complex distributions in real communication networks? CoRR abs/2203.06491 (2022). DOI URL https://doi.org/10.48550/arXiv.2203.06491

  48. Kejriwal, M., Shen, K., Ni, C., Torzec, N.: An evaluation and annotation methodology for product category matching in e-commerce. Comput. Ind. 131, 103497 (2021). DOI URL https://doi.org/10.1016/j.compind.2021.103497

  49. Kejriwal, M., Shen, K., Ni, C., Torzec, N.: Transfer-based taxonomy induction over concept labels. Eng. Appl. Artif. Intell. 108, 104548 (2022). DOI URL https://doi.org/10.1016/j.engappai.2021.104548

  50. Kejriwal, M., Szekely, P.: Knowledge graphs for social good: An entity-centric search engine for the human trafficking domain. IEEE Transactions on Big Data (2017)

    Google Scholar 

  51. Kejriwal, M., Szekely, P.A.: Information extraction in illicit domains. CoRR abs/1703.03097 (2017). URL http://arxiv.org/abs/1703.03097

  52. Kejriwal, M., Szekely, P.A.: Information extraction in illicit web domains. In: R. Barrett, R. Cummings, E. Agichtein, E. Gabrilovich (eds.) Proceedings of the 26th International Conference on World Wide Web, WWW 2017, Perth, Australia, April 3–7, 2017, pp. 997–1006. ACM (2017). DOI URL https://doi.org/10.1145/3038912.3052642

  53. Kejriwal, M., Szekely, P.A.: Neural embeddings for populated geonames locations. In: C. d’Amato, M. Fernández, V.A.M. Tamma, F. Lécué, P. Cudré-Mauroux, J.F. Sequeda, C. Lange, J. Heflin (eds.) The Semantic Web - ISWC 2017 - 16th International Semantic Web Conference, Vienna, Austria, October 21–25, 2017, Proceedings, Part II, Lecture Notes in Computer Science, vol. 10588, pp. 139–146. Springer (2017). DOI URL https://doi.org/10.1007/978-3-319-68204-4_14

  54. Kejriwal, M., Szekely, P.A.: Constructing domain-specific search engines with no programming. In: S.A. McIlraith, K.Q. Weinberger (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018, pp. 8204–8205. AAAI Press (2018). URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16990

  55. Kejriwal, M., Szekely, P.A.: Technology-assisted investigative search: A case study from an illicit domain. In: R.L. Mandryk, M. Hancock, M. Perry, A.L. Cox (eds.) Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, Montreal, QC, Canada, April 21–26, 2018. ACM (2018). DOI URL https://doi.org/10.1145/3170427.3174364

  56. Kejriwal, M., Szekely, P.A., Troncy, R. (eds.): Proceedings of the 10th International Conference on Knowledge Capture, K-CAP 2019, Marina del Rey, CA, USA, November 19–21, 2019. ACM (2019). DOI URL https://doi.org/10.1145/3360901

  57. Koren, Y., Rendle, S., Bell, R.: Advances in collaborative filtering. Recommender systems handbook pp. 91–142 (2022)

    Google Scholar 

  58. Lewis, T.G.: Network science: Theory and applications. John Wiley & Sons (2011)

    Google Scholar 

  59. Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Lago, A.D., et al.: Competition-level code generation with AlphaCode. arXiv preprint arXiv:2203.07814 (2022)

    Google Scholar 

  60. Lu, Y.: Duke energy used computer vision and robots to cut costs by $74m (2021). URL https://venturebeat.com/2021/07/18/duke-energy-used-computer-vision-and-robots-to-cut-costs-by-74m/

  61. Matloff, N., et al.: Immigration and the tech industry: As a labour shortage remedy, for innovation, or for cost savings? Migration Letters 10(2), 210–227 (2013)

    Article  Google Scholar 

  62. Nadeem, M., Bethke, A., Reddy, S.: Stereoset: Measuring stereotypical bias in pretrained language models. arXiv preprint arXiv:2004.09456 (2020)

    Google Scholar 

  63. Newman, M.: Networks. Oxford University Press (2018)

    Google Scholar 

  64. Peng, D., Zheng, S., Li, Y., Ke, G., He, D., Liu, T.Y.: How could neural networks understand programs? In: International Conference on Machine Learning, pp. 8476–8486. PMLR (2021)

    Google Scholar 

  65. Richardson, G.: Wells Fargo: Personalizing real-time conversations with 70 million customers (2022). URL https://www.pega.com/customers/wells-fargo-customer-decision-hub

  66. Ruff, K.M., Pappu, R.V.: AlphaFold and implications for intrinsically disordered proteins. Journal of Molecular Biology 433(20), 167208 (2021)

    Article  Google Scholar 

  67. Santos, H., Shen, K., Mulvehill, A.M., Razeghi, Y., McGuinness, D.L., Kejriwal, M.: A theoretically grounded benchmark for evaluating machine commonsense. CoRR abs/2203.12184 (2022). DOI URL https://doi.org/10.48550/arXiv.2203.12184

  68. Shen, K., Kejriwal, M.: A data-driven study of commonsense knowledge using the ConceptNet knowledge base. CoRR abs/2011.14084 (2020). URL https://arxiv.org/abs/2011.14084

  69. Shen, K., Kejriwal, M.: On the generalization abilities of fine-tuned commonsense language representation models. In: M. Bramer, R. Ellis (eds.) Artificial Intelligence XXXVIII - 41st SGAI International Conference on Artificial Intelligence, AI 2021, Cambridge, UK, December 14–16, 2021, Proceedings, Lecture Notes in Computer Science, vol. 13101, pp. 3–16. Springer (2021). DOI URL https://doi.org/10.1007/978-3-030-91100-3_1

  70. Smith, B.: How TikTok reads your mind (2021). URL https://www.nytimes.com/2021/12/05/business/media/tiktok-algorithm.html

  71. Snelgrove, G.: Boeing’s flying taxi - what’s the latest? (2020). URL https://simpleflying.com/boeing-flying-taxi/

  72. Staff, W.: Inside TikTok’s algorithm: A WSJ video investigation (2021). URL https://www.wsj.com/articles/tiktok-algorithm-video-investigation-11626877477

  73. Szekely, P.A., Kejriwal, M.: Domain-specific insight graphs (DIG). In: P. Champin, F. Gandon, M. Lalmas, P.G. Ipeirotis (eds.) Companion of the Web Conference 2018, WWW 2018, Lyon, France, April 23-27, 2018, pp. 433–434. ACM (2018). DOI URL https://doi.org/10.1145/3184558.3186203

  74. Tang, J., Vazirgiannis, M., Dong, Y., Malliaros, F.D., Cochez, M., Kejriwal, M., Rettinger, A.: BigNet 2018 Chairs’ welcome & organization. In: P. Champin, F. Gandon, M. Lalmas, P.G. Ipeirotis (eds.) Companion of the Web Conference 2018, WWW 2018, Lyon, France, April 23–27, 2018, pp. 943–944. ACM (2018). DOI URL https://doi.org/10.1145/3184558.3192293

  75. Toews, R.: A wave of billion-dollar language AI startups is coming (2022). URL https://www.forbes.com/sites/robtoews/2022/03/27/a-wave-of-billion-dollar-language-ai-startups-is-coming/?sh=1761d1572b14

  76. Trinh, T.H., Le, Q.V.: A simple method for commonsense reasoning. arXiv preprint arXiv:1806.02847 (2018)

    Google Scholar 

  77. Truby, J.: Decarbonizing bitcoin: Law and policy choices for reducing the energy consumption of blockchain technologies and digital currencies. Energy Research & Social Science 44, 399–410 (2018)

    Article  Google Scholar 

  78. Williams, T., Scheutz, M.: Power: A domain-independent algorithm for probabilistic, open-world entity resolution. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1230–1235. IEEE (2015)

    Google Scholar 

  79. Zhang, T., Subburathinam, A., Shi, G., Huang, L., Lu, D., Pan, X., Li, M., Zhang, B., Wang, Q., Whitehead, S., Ji, H., Zareian, A., Akbari, H., Chen, B., Zhong, R., Shao, S., Allaway, E., Chang, S., McKeown, K.R., Li, D., Huang, X., Sun, K., Peng, X., Gabbard, R., Freedman, M., Kejriwal, M., Nevatia, R., Szekely, P.A., Kumar, T.K.S., Sadeghian, A., Bergami, G., Dutta, S., Rodríguez, M.E., Wang, D.Z.: GAIA - A multi-media multi-lingual knowledge extraction and hypothesis generation system. In: Proceedings of the 2018 Text Analysis Conference, TAC 2018, Gaithersburg, Maryland, USA, November 13–14, 2018. NIST (2018). URL https://tac.nist.gov/publications/2018/participant.papers/TAC2018.GAIA.proceedings.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kejriwal, M. (2023). AI in Industry Today. In: Artificial Intelligence for Industries of the Future. Future of Business and Finance. Springer, Cham. https://doi.org/10.1007/978-3-031-19039-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19039-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19038-4

  • Online ISBN: 978-3-031-19039-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics