Skip to main content

Recurrent and Graph Neural Networks for Particle Tracking at the BM@N Experiment

  • Conference paper
  • First Online:
Advances in Neural Computation, Machine Learning, and Cognitive Research VI (NEUROINFORMATICS 2022)

Abstract

This work presents a new two-step approach for elementary particle tracking that combines the advantages of both local and global tracking algorithms. On the first stage, where the graph of possible track-candidates is too big to fit into memory, a recurrent neural network model TrackNETv3 is used for building track candidates. On the second stage there is a graph neural network GraphNet needed for clearing the graph from the fake segments. The results of testing the proposed approach on the 3,2 GeV Ar+Pb simulation for the BM@N RUN7 are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frühwirth, R.: Application of Kalman filtering to track and vertex fitting. Nuclear Instrum. Meth. Phys. Res. Sect. A Acceler. Spectrom. Detect. Assoc. Equip. 262(2–3), 444–450 (1987)

    Google Scholar 

  2. Nikolskaia, A., et al.: TrackNETv3 with optimized inference for BM@N tracking. In: Proceedings of the 9th International Conference “Distributed Computing and Grid Technologies in Science and Education” (GRID 2021), 5–9 July 2021, vol. 3041, pp. 332–337. Dubna, Russia (2021)

    Google Scholar 

  3. Bakina, O., et al.: Global strategy of tracking on the basis of graph neural network for BES-III CGEM inner detector. In: Bakina, O., et al. (eds.) AIP Conference Proceedings, vol. 2377, no. 1, pp. 060001. AIP Publishing LLC (2021)

    Google Scholar 

  4. Amrouche, S., et al. (eds.) The Tracking Machine Learning Challenge: Accuracy Phase. In: Escalera, S., Herbrich, R. (eds.) The NeurIPS '18 Competition. SSCML, pp. 231–264. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29135-8_9

  5. Ju, X., et al.: Performance of a geometric deep learning pipeline for HL-LHC particle tracking. Eur. Phys. J. C 81(10), 1–14 (2021). https://doi.org/10.1140/epjc/s10052-021-09675-8

    Article  Google Scholar 

  6. Baranov, D.A.: Novel approach to the particle track reconstruction based on deep learning methods. In: Baranov, D., Mitsyn, S., Ososkov, G., Goncharov, P., Tsytrinov, A. (eds.) Selected Papers of the 26th International Symposium on Nuclear Electronics and Computing (NEC 2017), 25–29 Sept 2017, vol. 2023, pp. 37–45. Budva, Montenegro. CEUR Proceedings (2017)

    Google Scholar 

  7. Baranov, D.A.: Catch and Prolong: recurrent neural network for seeking track-candidates. In: Baranov, D., Ososkov, G., Goncharov, P., Tsytrinov, A. (eds.) The XXII International Scientific Conference of Young Scientists and Specialists (AYSS-2018), vol. 201, pp. 05001. EPJ Web of Conferences. EDP Sciences (2019)

    Google Scholar 

  8. Goncharov, P.: Particle track reconstruction with the TrackNETv2. In: Goncharov, P., Ososkov, G., Baranov, D. (eds.) AIP Conference Proceedings, vol. 2163, no. 1, pp. 040003. AIP Publishing LLC (2019)

    Google Scholar 

  9. Goncharov, P., et al.: BM@ N tracking with novel deep learning methods. In: Goncharov, P., Shchavelev, E., Ososkov, G., Baranov, D. (eds.) EPJ Web of Conferences, vol. 226, pp. 03009. EDP Sciences (2020)

    Google Scholar 

  10. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with gpus. IEEE Trans. Big Data 7 (2019)

    Google Scholar 

  11. Kapishin, M., et al.: Studies of baryonic matter at the BM@N experiment (JINR). Nuclear Phys. A 982, 967–970 (2019)

    Google Scholar 

  12. Adam, G., et al.: CEUR Workshop Proc. 2267, 638–644 (2018)

    Google Scholar 

Download references

Acknowledgments

The calculations were carried out on the basis of the HybriLIT heterogeneous computing platform (LIT, JINR) [12].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniil Rusov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rusov, D. et al. (2023). Recurrent and Graph Neural Networks for Particle Tracking at the BM@N Experiment. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V., Tiumentsev, Y. (eds) Advances in Neural Computation, Machine Learning, and Cognitive Research VI. NEUROINFORMATICS 2022. Studies in Computational Intelligence, vol 1064. Springer, Cham. https://doi.org/10.1007/978-3-031-19032-2_32

Download citation

Publish with us

Policies and ethics