Skip to main content

Sparse LiDAR and Binocular Stereo Fusion Network for 3D Object Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13536))

Included in the following conference series:

  • 1703 Accesses

Abstract

3D object detection is an essential task in autonomous driving and virtual reality. Existing approaches largely rely on expensive LiDAR sensors for accurate depth information to have high performance. While much lower-cost stereo cameras have been introduced as a promising alternative, there is still a notable performance gap. In this paper, we explore the idea to leverage sparse LiDAR and stereo images obtained by low-cost sensors for 3D object detection. We propose a novel multi-modal attention fusion end-to-end learning framework for 3D object detection, which effectively integrate the complementarities of sparse LiDAR and stereo images. Instead of directly fusing LiDAR and stereo modalities, we introduce a deep attention feature fusion module, which enables interactions between intermediate layers of LiDAR and stereo image paths by exploring the interdependencies of channel features. These fused features connect higher layer features after upsampling and lower layer features from the stereo image pathway and sparse LiDAR pathway. Hence, the fused features have high-level semantics with higher resolution, which is beneficial for the following object detection network. We provide detailed experiments on KITTI benchmark and achieve state-of-the-art performance compared with the low-cost based methods.

This work was supported by the National Natural Science Foundation of China under Grants 61801414, 62072391, Natural Science Foundation of Shandong Province under Grants ZR2020QF108.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brazil, G., Liu, X.: M3d-RPN: Monocular 3d region proposal network for object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9287–9296 (2019)

    Google Scholar 

  2. Cai, Y., Li, B., Jiao, Z., Li, H., Zeng, X., Wang, X.: Monocular 3d object detection with decoupled structured polygon estimation and height-guided depth estimation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10478–10485 (2020)

    Google Scholar 

  3. Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., Urtasun, R.: 3d object proposals using stereo imagery for accurate object class detection. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1259–1272 (2017)

    Article  Google Scholar 

  4. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1907–1915 (2017)

    Google Scholar 

  5. Chen, Y., Liu, S., Shen, X., Jia, J.: DSGN: deep stereo geometry network for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12536–12545 (2020)

    Google Scholar 

  6. Cheng, B., Sheng, L., Shi, S., Yang, M., Xu, D.: Back-tracing representative points for voting-based 3d object detection in point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8963–8972 (2021)

    Google Scholar 

  7. Choi, C., Choi, J.H., Li, J., Malla, S.: Shared cross-modal trajectory prediction for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 244–253 (2021)

    Google Scholar 

  8. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  9. He, C., Zeng, H., Huang, J., Hua, X.S., Zhang, L.: Structure aware single-stage 3d object detection from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11873–11882 (2020)

    Google Scholar 

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. He, Y., et al.: DVFENet: dual-branch voxel feature extraction network for 3d object detection. Neurocomputing 459, 201–211 (2021)

    Article  Google Scholar 

  13. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  14. Ku, J., Harakeh, A., Waslander, S.L.: In defense of classical image processing: fast depth completion on the CPU. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 16–22. IEEE (2018)

    Google Scholar 

  15. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3d proposal generation and object detection from view aggregation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–8. IEEE (2018)

    Google Scholar 

  16. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)

    Google Scholar 

  17. Li, P., Chen, X., Shen, S.: Stereo R-CNN based 3d object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7644–7652 (2019)

    Google Scholar 

  18. Li, P., Zhao, H., Liu, P., Cao, F.: RTM3D: real-time monocular 3d detection from object keypoints for autonomous driving. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 644–660. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_38

    Chapter  Google Scholar 

  19. Liang, M., Yang, B., Chen, Y., Hu, R., Urtasun, R.: Multi-task multi-sensor fusion for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7345–7353 (2019)

    Google Scholar 

  20. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8895–8904 (2019)

    Google Scholar 

  21. Liu, Z., Wu, Z., Tóth, R.: Smoke: Single-stage monocular 3d object detection via keypoint estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 996–997 (2020)

    Google Scholar 

  22. Luo, S., Dai, H., Shao, L., Ding, Y.: M3DSSD: monocular 3d single stage object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6145–6154 (2021)

    Google Scholar 

  23. Mai, N.A.M., Duthon, P., Khoudour, L., Crouzil, A., Velastin, S.A.: Sparse lidar and stereo fusion (SLS-fusion) for depth estimation and 3d object detection. arXiv preprint arXiv:2103.03977 (2021)

  24. Peng, W., Pan, H., Liu, H., Sun, Y.: IDA-3D: instance-depth-aware 3d object detection from stereo vision for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13015–13024 (2020)

    Google Scholar 

  25. Prakash, A., Chitta, K., Geiger, A.: Multi-modal fusion transformer for end-to-end autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7077–7087 (2021)

    Google Scholar 

  26. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3d object detection from RGB-D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 918–927 (2018)

    Google Scholar 

  27. Qin, Z., Wang, J., Lu, Y.: MonoGRNet: a geometric reasoning network for monocular 3d object localization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8851–8858 (2019)

    Google Scholar 

  28. Qin, Z., Wang, J., Lu, Y.: Triangulation learning network: from monocular to stereo 3d object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7607–7615. IEEE (2019)

    Google Scholar 

  29. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  30. Shi, Y., Guo, Y., Mi, Z., Li, X.: Stereo centerNet-based 3d object detection for autonomous driving. Neurocomputing 471, 219–229 (2022)

    Article  Google Scholar 

  31. Sun, J., Chen, L., Xie, Y., Zhang, S., Jiang, Q., Zhou, X., Bao, H.: DISP R-CNN: stereo 3d object detection via shape prior guided instance disparity estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10548–10557 (2020)

    Google Scholar 

  32. Tang, Y., Dorn, S., Savani, C.: Center3D: Center-based monocular 3d object detection with joint depth understanding. In: Akata, Z., Geiger, A., Sattler, T. (eds.) DAGM GCPR 2020. LNCS, vol. 12544, pp. 289–302. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71278-5_21

    Chapter  Google Scholar 

  33. Vora, S., Lang, A.H., Helou, B., Beijbom, O.: Pointpainting: Sequential fusion for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4604–4612 (2020)

    Google Scholar 

  34. Wang, T.H., Hu, H.N., Lin, C.H., Tsai, Y.H., Chiu, W.C., Sun, M.: 3d lidar and stereo fusion using stereo matching network with conditional cost volume normalization. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5895–5902. IEEE (2019)

    Google Scholar 

  35. Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.Q.: Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8445–8453 (2019)

    Google Scholar 

  36. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  37. Xiao, Y., Codevilla, F., Gurram, A., Urfalioglu, O., López, A.M.: Multimodal end-to-end autonomous driving. IEEE Trans. Intell. Transp. Syst. (2020)

    Google Scholar 

  38. Xu, B., Chen, Z.: Multi-level fusion based 3d object detection from monocular images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2345–2353 (2018)

    Google Scholar 

  39. Xu, Z., et al.: ZoomNet: part-aware adaptive zooming neural network for 3d object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12557–12564 (2020)

    Google Scholar 

  40. Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3d object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11784–11793 (2021)

    Google Scholar 

  41. You, Y., et al.: Pseudo-lidar++: accurate depth for 3d object detection in autonomous driving. In: ICLR (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlai Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, W., Su, K., Ren, J., Cong, R., Li, S., Wang, S. (2022). Sparse LiDAR and Binocular Stereo Fusion Network for 3D Object Detection. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13536. Springer, Cham. https://doi.org/10.1007/978-3-031-18913-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18913-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18912-8

  • Online ISBN: 978-3-031-18913-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics