Skip to main content

PilotAttnNet: Multi-modal Attention Network for End-to-End Steering Control

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Abstract

Vision-based end-to-end steering control is a popular and challenging task in autonomous driving. Previous methods take single image or image sequence as input and predict the steering control angle by deep neural networks. The image contains rich color and texture information, but it lacks spatial information. In this work, we thus incorporate LiDAR data to provide spatial structures, and propose a novel multi-modal attention model named PilotAttnNet for end-to-end steering angle prediction. We also present a new end-to-end self-driving dataset, Pandora-Driving, which provides synchronized LiDAR and image sequences, as well as corresponding standard driving behaviors. Our dataset includes rich driving scenarios, such as urban, country, and off-road. Extensive experiments are conducted on both publicly available LiVi-Set and our Pandora-Driving dataset, showing the great performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Best, A., Narang, S., Pasqualin, L., Barber, D., Manocha, D.: AutonoVi-Sim: autonomous vehicle simulation platform with weather, sensing, and traffic control. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1048–1056 (2018)

    Google Scholar 

  2. Bewley, A., et al.: Learning to drive from simulation without real world labels. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 4818–4824. IEEE (2019)

    Google Scholar 

  3. Bogoslavskyi, I., Stachniss, C.: Efficient online segmentation for sparse 3D laser scans. PFG-J. Photogramm. Remote Sens. Geoinf. Sci. 85(1), 41–52 (2017)

    Google Scholar 

  4. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

  5. Bojarski, M., et al.: Explaining how a deep neural network trained with end-to-end learning steers a car. arXiv preprint arXiv:1704.07911 (2017)

  6. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1907–1915 (2017)

    Google Scholar 

  7. Chen, Y., et al.: Lidar-video driving dataset: learning driving policies effectively. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5870–5878 (2018)

    Google Scholar 

  8. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: an open urban driving simulator. In: Conference on Robot Learning, pp. 1–16. PMLR (2017)

    Google Scholar 

  9. Fan, Z., Zhu, Y., He, Y., Sun, Q., Liu, H., He, J.: Deep learning on monocular object pose detection and tracking: a comprehensive overview. arXiv e-prints, pp. arXiv-2105 (2021)

    Google Scholar 

  10. Kim, J., Canny, J.: Interpretable learning for self-driving cars by visualizing causal attention. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2942–2950 (2017)

    Google Scholar 

  11. Krejsa, J., Věchet, S., Hrbáček, J., Schreiber, P.: High level software architecture for autonomous mobile robot. In: Brezina, T., Jablonski, R. (eds.) Recent Advances in Mechatronics, pp. 185–190. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-05022-0_32

  12. Pomerleau, D.: An autonomous land vehicle in a neural network. In: Advances in Neural Information Processing Systems, vol. 1 (1998)

    Google Scholar 

  13. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  14. Sobh, I., et al.: End-to-end multi-modal sensors fusion system for urban automated driving (2018)

    Google Scholar 

  15. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  16. Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale video datasets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2174–2182 (2017)

    Google Scholar 

  17. Xu, K., Xiao, X., Miao, J., Luo, Q.: Data driven prediction architecture for autonomous driving and its application on Apollo platform. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 175–181. IEEE (2020)

    Google Scholar 

  18. Yang, S., Mao, X., Yang, S., Liu, Z.: Towards a hybrid software architecture and multi-agent approach for autonomous robot software. Int. J. Adv. Rob. Syst. 14(4), 1729881417716088 (2017)

    Google Scholar 

  19. Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2636–2645 (2020)

    Google Scholar 

  20. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  21. Zeng, W., et al.: End-to-end interpretable neural motion planner. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8660–8669 (2019)

    Google Scholar 

  22. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Song, Z., Lu, J., Qu, X., Fan, Z. (2022). PilotAttnNet: Multi-modal Attention Network for End-to-End Steering Control. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13536. Springer, Cham. https://doi.org/10.1007/978-3-031-18913-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18913-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18912-8

  • Online ISBN: 978-3-031-18913-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics