Skip to main content

JUICE: JUstIfied Counterfactual Explanations

  • Conference paper
  • First Online:
Discovery Science (DS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13601))

Included in the following conference series:

Abstract

Complex, highly accurate machine learning algorithms support decision-making processes with large and intricate datasets. However, these models have low explainability. Counterfactual explanation is a technique that tries to find a set of feature changes on a given instance to modify the models prediction output from an undesired to a desired class. To obtain better explanations, it is crucial to generate faithful counterfactuals, supported by and connected to observations and the knowledge constructed on them. In this study, we propose a novel counterfactual generation algorithm that provides faithfulness by justification, which may increase developers and users trust in the explanations by supporting the counterfactuals with a known observation. The proposed algorithm guarantees justification for mixed-features spaces and we show it performs similarly with respect to state-of-the-art algorithms across other metrics such as proximity, sparsity, and feasibility. Finally, we introduce the first model-agnostic algorithm to verify counterfactual justification in mixed-features spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/alku7660/JUICE.

  2. 2.

    https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis.

References

  1. Bobek, S., Nalepa, G.J.: Explainability in knowledge discovery from data streams. In: 2019 First International Conference on Societal Automation (SA), pp. 1–4. IEEE (2019)

    Google Scholar 

  2. Boer, N., Deutch, D., Frost, N., Milo, T.: Just in time: personal temporal insights for altering model decisions. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 1988–1991. IEEE (2019)

    Google Scholar 

  3. Byrne, R.M.: Counterfactuals in explainable artificial intelligence (XAI): evidence from human reasoning. In: IJCAI, pp. 6276–6282 (2019)

    Google Scholar 

  4. Dandl, S., Molnar, C., Binder, M., Bischl, B.: Multi-objective counterfactual explanations. In: Bäck, T. (ed.) PPSN 2020. LNCS, vol. 12269, pp. 448–469. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_31

    Chapter  Google Scholar 

  5. Dodge, J., Liao, Q.V., Zhang, Y., Bellamy, R.K., Dugan, C.: Explaining models: an empirical study of how explanations impact fairness judgment. In: Proceedings of the 24th International Conference on Intelligent User Interfaces, pp. 275–285 (2019)

    Google Scholar 

  6. Karimi, A.H., Barthe, G., Balle, B., Valera, I.: Model-agnostic counterfactual explanations for consequential decisions. In: International Conference on Artificial Intelligence and Statistics, pp. 895–905. PMLR (2020)

    Google Scholar 

  7. Kyrimi, E., Neves, M.R., McLachlan, S., Neil, M., Marsh, W., Fenton, N.: Medical idioms for clinical Bayesian network development. J. Biomed. Inform. 108, 103495 (2020)

    Article  Google Scholar 

  8. Laugel, T., Lesot, M.J., Marsala, C., Detyniecki, M.: Issues with post-hoc counterfactual explanations: a discussion. arXiv preprint arXiv:1906.04774 (2019)

  9. Laugel, T., Lesot, M.J., Marsala, C., Renard, X., Detyniecki, M.: Inverse classification for comparison-based interpretability in machine learning. arXiv preprint arXiv:1712.08443 (2017)

  10. Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., Detyniecki, M.: Unjustified classification regions and counterfactual explanations in machine learning. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11907, pp. 37–54. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46147-8_3

    Chapter  Google Scholar 

  11. Lindgren, T., Papapetrou, P., Samsten, I., Asker, L.: Example-based feature tweaking using random forests. In: 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI), pp. 53–60. IEEE (2019)

    Google Scholar 

  12. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Molnar, C.: Interpretable machine learning: a guide for making black-box models explainable (2021). https://christophm.github.io/interpretable-ml-book/limo.html

  14. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 607–617 (2020)

    Google Scholar 

  15. Pawelczyk, M., Bielawski, S., Heuvel, J.v.d., Richter, T., Kasneci, G.: CARLA: a python library to benchmark algorithmic recourse and counterfactual explanation algorithms. arXiv preprint arXiv:2108.00783 (2021)

  16. Pawelczyk, M., Broelemann, K., Kasneci, G.: Learning model-agnostic counterfactual explanations for tabular data. In: Proceedings of The Web Conference 2020, pp. 3126–3132 (2020)

    Google Scholar 

  17. Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., Flach, P.: Face: feasible and actionable counterfactual explanations. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 344–350 (2020)

    Google Scholar 

  18. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  19. Tolomei, G., Silvestri, F., Haines, A., Lalmas, M.: Interpretable predictions of tree-based ensembles via actionable feature tweaking. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 465–474 (2017)

    Google Scholar 

  20. Verma, S., Dickerson, J., Hines, K.: Counterfactual explanations for machine learning: a review. arXiv:2010.10596 (2020)

  21. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. JL Tech. 31, 841 (2017)

    Google Scholar 

  22. Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viégas, F., Wilson, J.: The what-if tool: interactive probing of machine learning models. IEEE Trans. Vis. Comput. Graph. 26(1), 56–65 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Kuratomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuratomi, A., Miliou, I., Lee, Z., Lindgren, T., Papapetrou, P. (2022). JUICE: JUstIfied Counterfactual Explanations. In: Pascal, P., Ienco, D. (eds) Discovery Science. DS 2022. Lecture Notes in Computer Science(), vol 13601. Springer, Cham. https://doi.org/10.1007/978-3-031-18840-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18840-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18839-8

  • Online ISBN: 978-3-031-18840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics