Abstract
Complex, highly accurate machine learning algorithms support decision-making processes with large and intricate datasets. However, these models have low explainability. Counterfactual explanation is a technique that tries to find a set of feature changes on a given instance to modify the models prediction output from an undesired to a desired class. To obtain better explanations, it is crucial to generate faithful counterfactuals, supported by and connected to observations and the knowledge constructed on them. In this study, we propose a novel counterfactual generation algorithm that provides faithfulness by justification, which may increase developers and users trust in the explanations by supporting the counterfactuals with a known observation. The proposed algorithm guarantees justification for mixed-features spaces and we show it performs similarly with respect to state-of-the-art algorithms across other metrics such as proximity, sparsity, and feasibility. Finally, we introduce the first model-agnostic algorithm to verify counterfactual justification in mixed-features spaces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bobek, S., Nalepa, G.J.: Explainability in knowledge discovery from data streams. In: 2019 First International Conference on Societal Automation (SA), pp. 1–4. IEEE (2019)
Boer, N., Deutch, D., Frost, N., Milo, T.: Just in time: personal temporal insights for altering model decisions. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 1988–1991. IEEE (2019)
Byrne, R.M.: Counterfactuals in explainable artificial intelligence (XAI): evidence from human reasoning. In: IJCAI, pp. 6276–6282 (2019)
Dandl, S., Molnar, C., Binder, M., Bischl, B.: Multi-objective counterfactual explanations. In: Bäck, T. (ed.) PPSN 2020. LNCS, vol. 12269, pp. 448–469. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_31
Dodge, J., Liao, Q.V., Zhang, Y., Bellamy, R.K., Dugan, C.: Explaining models: an empirical study of how explanations impact fairness judgment. In: Proceedings of the 24th International Conference on Intelligent User Interfaces, pp. 275–285 (2019)
Karimi, A.H., Barthe, G., Balle, B., Valera, I.: Model-agnostic counterfactual explanations for consequential decisions. In: International Conference on Artificial Intelligence and Statistics, pp. 895–905. PMLR (2020)
Kyrimi, E., Neves, M.R., McLachlan, S., Neil, M., Marsh, W., Fenton, N.: Medical idioms for clinical Bayesian network development. J. Biomed. Inform. 108, 103495 (2020)
Laugel, T., Lesot, M.J., Marsala, C., Detyniecki, M.: Issues with post-hoc counterfactual explanations: a discussion. arXiv preprint arXiv:1906.04774 (2019)
Laugel, T., Lesot, M.J., Marsala, C., Renard, X., Detyniecki, M.: Inverse classification for comparison-based interpretability in machine learning. arXiv preprint arXiv:1712.08443 (2017)
Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., Detyniecki, M.: Unjustified classification regions and counterfactual explanations in machine learning. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11907, pp. 37–54. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46147-8_3
Lindgren, T., Papapetrou, P., Samsten, I., Asker, L.: Example-based feature tweaking using random forests. In: 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI), pp. 53–60. IEEE (2019)
Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)
Molnar, C.: Interpretable machine learning: a guide for making black-box models explainable (2021). https://christophm.github.io/interpretable-ml-book/limo.html
Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 607–617 (2020)
Pawelczyk, M., Bielawski, S., Heuvel, J.v.d., Richter, T., Kasneci, G.: CARLA: a python library to benchmark algorithmic recourse and counterfactual explanation algorithms. arXiv preprint arXiv:2108.00783 (2021)
Pawelczyk, M., Broelemann, K., Kasneci, G.: Learning model-agnostic counterfactual explanations for tabular data. In: Proceedings of The Web Conference 2020, pp. 3126–3132 (2020)
Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., Flach, P.: Face: feasible and actionable counterfactual explanations. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 344–350 (2020)
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)
Tolomei, G., Silvestri, F., Haines, A., Lalmas, M.: Interpretable predictions of tree-based ensembles via actionable feature tweaking. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 465–474 (2017)
Verma, S., Dickerson, J., Hines, K.: Counterfactual explanations for machine learning: a review. arXiv:2010.10596 (2020)
Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. JL Tech. 31, 841 (2017)
Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viégas, F., Wilson, J.: The what-if tool: interactive probing of machine learning models. IEEE Trans. Vis. Comput. Graph. 26(1), 56–65 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kuratomi, A., Miliou, I., Lee, Z., Lindgren, T., Papapetrou, P. (2022). JUICE: JUstIfied Counterfactual Explanations. In: Pascal, P., Ienco, D. (eds) Discovery Science. DS 2022. Lecture Notes in Computer Science(), vol 13601. Springer, Cham. https://doi.org/10.1007/978-3-031-18840-4_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-18840-4_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18839-8
Online ISBN: 978-3-031-18840-4
eBook Packages: Computer ScienceComputer Science (R0)