Skip to main content

Leveraging Spatio-Temporal Autocorrelation to Improve the Forecasting of the Energy Consumption in Smart Grids

  • Conference paper
  • First Online:
Discovery Science (DS 2022)

Abstract

Smart grids are networks that distribute electricity by relying on advanced communication technologies, sensor measurements, and predictive methods, to quickly adapt the network behavior to different possible scenarios. In this context, the adoption of machine learning approaches to forecast the customer energy consumption is essential to optimize network planning operations, avoid unnecessary energy production, and minimize power shortages. However, classical forecasting methods are not able to take into account spatial and temporal autocorrelation phenomena, naturally introduced by the spatial proximity of consumers, and by the seasonality of the energy consumption trends.

In this paper, we investigate the adoption of several solutions to take into account spatio-temporal autocorrelation phenomena. Specifically, we investigate the contribution provided by the explicit representation of temporal information related to historical measurements using multiple strategies, as well as that of simultaneously predicting multiple future consumption measurements in a multi-step predictive setting. Finally, we investigate the effectiveness of injecting descriptive features to make the learning methods aware of the spatial closeness among the consumers.

The experimental evaluation performed on a real-world electrical network demonstrated the positive contribution of making the models aware of spatio-temporal autocorrelation phenomena, and proved the overall superiority of models based on the multi-step predictive setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some rows in the normalized matrix can have a sum of 0, when the corresponding consumer has no other consumers falling in its neighborhood, according to maxDist.

References

  1. Anselin, L.: Local indicators of spatial association – LISA. Geogr. Anal. 27(2), 93–115 (1995)

    Article  Google Scholar 

  2. Berriel, R.F., Lopes, A.T., Rodrigues, A., Varejao, F.M., Oliveira-Santos, T.: Monthly energy consumption forecast: a deep learning approach. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4283–4290. IEEE (2017)

    Google Scholar 

  3. Bontempi, G., Ben Taieb, S.: Conditionally dependent strategies for multiple-step-ahead prediction in local learning. Int. J. Forecast 27(3), 689–699 (2011)

    Article  Google Scholar 

  4. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and control, 5th edn. Wiley (2015)

    Google Scholar 

  5. Ceci, M., Corizzo, R., Fumarola, F., Malerba, D., Rashkovska, A.: Predictive modeling of PV energy production: how to set up the learning task for a better prediction? IEEE Trans. Ind. Inf. 13(3), 956–966 (2016)

    Article  Google Scholar 

  6. Cabral, D.A., Legey, J., et al.: Electricity consumption forecasting in Brazil: a spatial econometrics approach. Energy 126, 124–131 (2017)

    Google Scholar 

  7. Dray, S., Legendre, P., Peres-Neto, P.R.: Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196(3–4), 483–493 (2006)

    Article  Google Scholar 

  8. Gower, J.C.: Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53(3–4), 325–338 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lai, G., Chang, W.C., Yang, Y., Liu, H.: Modeling long-and short-term temporal patterns with deep neural networks. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 95–104 (2018)

    Google Scholar 

  10. Masum, S., Liu, Y., Chiverton, J.: Multi-step time series forecasting of electric load using machine learning models. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp. 148–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_15

    Chapter  Google Scholar 

  11. Mignone, P., Pio, G.: Positive unlabeled link prediction via transfer learning for gene network reconstruction. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos, G.A., Raś, Z.W. (eds.) ISMIS 2018. LNCS (LNAI), vol. 11177, pp. 13–23. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01851-1_2

    Chapter  Google Scholar 

  12. Ohtsuka, Y., Oga, T., Kakamu, K.: Forecasting electricity demand in Japan: a Bayesian spatial autoregressive ARMA approach. Comput. Stat. Data Anal. 54(11), 2721–2735 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Serafino, F., Pio, G., Ceci, M.: Ensemble learning for multi-type classification in heterogeneous networks. IEEE Trans. Knowl. Data Eng. 30(12), 2326–2339 (2018)

    Article  Google Scholar 

  14. Shih, S.-Y., Sun, F.-K., Lee, H.: Temporal pattern attention for multivariate time series forecasting. Mach. Learn. 108(8), 1421–1441 (2019). https://doi.org/10.1007/s10994-019-05815-0

    Article  MathSciNet  MATH  Google Scholar 

  15. Stojanova, D., Ceci, M., Appice, A., Džeroski, S.: Network regression with predictive clustering trees. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 333–348. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23808-6_22

    Chapter  Google Scholar 

  16. Taieb, S.B., Bontempi, G., Atiya, A.F., Sorjamaa, A.: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 39(8), 7067–7083 (2012)

    Article  Google Scholar 

  17. Tobler, W.R.: A computer movie simulating urban growth in the detroit region. Econ. Geogr. 46(sup1), 234–240 (1970)

    Article  Google Scholar 

  18. Williams, K.T., Gomez, J.D.: Predicting future monthly residential energy consumption using building characteristics and climate data: a statistical learning approach. Energy Build. 128, 1–11 (2016)

    Article  Google Scholar 

  19. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph WaveNet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)

  20. Zheng, C., Fan, X., Wang, C., Qi, J.: GMAN: a graph multi-attention network for traffic prediction. In: AAAI 2020, vol. 34 , no. 01, pp. 1234–1241 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianvito Pio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Aversa, A., Polimena, S., Pio, G., Ceci, M. (2022). Leveraging Spatio-Temporal Autocorrelation to Improve the Forecasting of the Energy Consumption in Smart Grids. In: Pascal, P., Ienco, D. (eds) Discovery Science. DS 2022. Lecture Notes in Computer Science(), vol 13601. Springer, Cham. https://doi.org/10.1007/978-3-031-18840-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18840-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18839-8

  • Online ISBN: 978-3-031-18840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics