Skip to main content

Vessel Segmentation via Link Prediction of Graph Neural Networks

  • Conference paper
  • First Online:
Multiscale Multimodal Medical Imaging (MMMI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13594))

Included in the following conference series:

Abstract

The topology of the segmented vessels is essential to evaluate a vessel segmentation approach. However, most popular convolutional neural network (CNN) models, such as U-Net and its variants, pay minimal attention to the topology of vessels. This paper proposes integrating graph neural networks (GNN) and classic CNN to enhance the model performance on the vessel topology. Specifically, we first use a U-Net as our base model. Then, to form the underlying graph in GNN, we sample the corners on the skeleton of the labeled vessels as the graph nodes and use the semantic information from the base U-Net as the node features, which construct the graph edges. Furthermore, we extend the previously reported graphical connectivity constraint module (GCCM) to predict the links between different nodes to maintain the vessel topology. Experiments on DRIVE and 1092 digital subtraction angiography (DSA) images of coronary arteries dataset show that our method has achieved comparable results with the current state-of-the-art methods on classic Dice and centerline-Dice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Ahn, S.J., Kim, M.: Variational graph normalized autoencoders. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 2827–2831 (2021)

    Google Scholar 

  3. Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  4. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint. arXiv:1412.6980 (2014)

  6. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint. arXiv:1611.07308 (2016)

  7. Lam, L., Lee, S.W., Suen, C.Y.: Thinning methodologies-a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(09), 869–885 (1992)

    Article  Google Scholar 

  8. Li, R., et al.: 3d graph-connectivity constrained network for hepatic vessel segmentation. IEEE J. Biomed. Health Inform. 26(3), 1251–1262 (2021)

    Article  Google Scholar 

  9. Livne, M., et al.: A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front. Neurosci. 13, 97 (2019)

    Article  Google Scholar 

  10. Mosinska, A., Koziński, M., Fua, P.: Joint segmentation and path classification of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intell. 42(6), 1515–1521 (2019)

    Article  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Saueressig, C., Berkley, A., Munbodh, R., Singh, R.: A joint graph and image convolution network for automatic brain tumor segmentation. arXiv preprint. arXiv:2109.05580 (2021)

  13. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  Google Scholar 

  14. Shi, J., et al.: Good features to track. In: 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600. IEEE (1994)

    Google Scholar 

  15. Shin, S.Y., Lee, S., Yun, I.D., Lee, K.M.: Deep vessel segmentation by learning graphical connectivity. Med. Image Anal. 58, 101556 (2019)

    Article  Google Scholar 

  16. Shit, S., et al.: clDice-a novel topology-preserving loss function for tubular structure segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16560–16569 (2021)

    Google Scholar 

  17. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  18. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint. arXiv:1710.10903 (2017)

  19. Wang, B., Qiu, S., He, H.: Dual encoding U-Net for retinal vessel segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 84–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_10

    Chapter  Google Scholar 

  20. Wang, C., Zhao, Z., Ren, Q., Xu, Y., Yu, Y.: Dense U-net based on patch-based learning for retinal vessel segmentation. Entropy 21(2), 168 (2019)

    Article  MathSciNet  Google Scholar 

  21. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  22. Yu, F., et al.: Annotation-free cardiac vessel segmentation via knowledge transfer from retinal images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 714–722. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_79

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by the Grants under Beijing Natural Science Foundation (Z180001), The National Natural Science Foundation of China (NSFC) under Grants 81801778, 12090022, and 11831002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, H., Zhao, J., Zhang, L. (2022). Vessel Segmentation via Link Prediction of Graph Neural Networks. In: Li, X., Lv, J., Huo, Y., Dong, B., Leahy, R.M., Li, Q. (eds) Multiscale Multimodal Medical Imaging. MMMI 2022. Lecture Notes in Computer Science, vol 13594. Springer, Cham. https://doi.org/10.1007/978-3-031-18814-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18814-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18813-8

  • Online ISBN: 978-3-031-18814-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics