Skip to main content

Nanomaterials; Potential Antibacterial Agents

  • Chapter
  • First Online:
Green Nanomaterials as Potential Antimicrobials

Abstract

Antibiotic-resistant microorganisms are among key reasons why antimicrobials are ineffective. Changes in the ability of microorganisms to withstand antibacterial treatments, either by making them inactive or diminishing their therapeutic efficacy, create bacterial resistance. Due to genetic changes, these resistances develop rapidly in microbes over time. The misuse and abuse of antibiotics considerably promote these alterations. Antibiotic resistance encompasses a variety of methods, such as enzymatic processes involving lactamases, acetyl transferases, and aminoglycoside-modifying enzymes. In addition to modifications in antibacterial targets (e.g., penicillin-binding proteins or mutations in DNA gyrase and topoisomerase IV), altering membrane permeability to limit antimicrobial drug penetration is a common resistance mechanism. Nanoparticles are now regarded as a viable alternative to antibiotics and have the capacity to combat the emergence of multidrug-resistant bacteria. Nanomaterials exhibiting antimicrobial activity, enhancing microbicidal properties, or ensuring the safe administration of antibiotics are sometimes called “nanoantibiotics”. Nanoparticles of metals and metal oxides, such as gold, iron oxide, magnesium oxide, nickel, and nickel oxide, possess potent antibacterial properties. Several mechanisms, including physical/mechanical devastation, oxidative stress, ROS-dependent oxidative stress, membrane active antimicrobial peptides, and polymer and bacterial metabolism inhibition, have been discovered to explain the antibacterial activities of nanoparticles. Critical uses of nanoparticles are governed by their controlled size, shape, and surface content, which are achieved through capping. In order to successfully validate the capping phenomena of stabilizers, these procedures must be modified, and more repeatable tests must be undertaken to minimize discrepancies in achieving the pure and controlled action of the proper capping agents. In addition, precise interpretation of the role of capping agents at the nanoparticle-stabilizer interface requires enhanced characterization techniques. In addition, in vitro and in vivo toxicity studies should be conducted on decreased nanocomposites, since risk assessment of pharmacological and bioremediation activities must be systematically conducted in laboratory and clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. H. Organization, Antibacterial Agents in Clinical Development: An analysis of the Antibacterial Clinical Development Pipeline, Including Tuberculosis (2017). Accessed:19 Jul 2022 (Online). Available: https://apps.who.int/iris/bitstream/handle/10665/258965/WH?sequence=1

  2. B. Aslam et al., Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 11, 1645–1658 (2018). https://doi.org/10.2147/IDR.S173867

    Article  CAS  Google Scholar 

  3. A.R. Coates, G. Halls, Y. Hu, Novel classes of antibiotics or more of the same? Br. J. Pharmacol. 163(1), 184–194 (2011). https://doi.org/10.1111/J.1476-5381.2011.01250.X

    Article  CAS  Google Scholar 

  4. IACG, No Time to Wait: Infections from Drug-Resistant... Google Scholar. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=IACG.+No+time+to+wait%3A+Infections+from+drug-resistant+securing+the+future.+Artforum.+Int.+2016%2C+54%2C+113–114.&btnG= Accessed 19 Jul 2022

  5. J.M. Munita, C.A. Arias, Microbiology spectrum, and undefined 2016, Mechanisms of antibiotic resistance. Am Soc Microbiol. Accessed: 19 Jul 2022 (Online). Available: https://journals.asm.org/doi/abs/10.1128/microbiolspec.VMBF-0016-2015

  6. J. Dugassa, N. Shukuri, Journal of Health, Medicine and Nursing, and undefined 2017, Review on Antibiotic Resistance and its Mechanism of Development. iprjb.org. vol. 1, no. 1 (2017), pp. 1–17. Accessed: 19 Jul 2022 (Online). Available: https://iprjb.org/journals/index.php/JHMN/article/view/560

  7. M.K. Rai, S.D. Deshmukh, A.P. Ingle, et al., Journal of applied, and undefined 2012, Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. Wiley Online Libr. 112(5), 841–852 (2012). https://doi.org/10.1111/j.1365-2672.2012.05253.x

  8. H.H. Hoffmann, A. Kunz, V.A. Simon, P. Palese, M.L. Shaw, Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 108(14), 5777–5782 (2011). https://doi.org/10.1073/PNAS.1101143108

    Article  CAS  Google Scholar 

  9. M.H. Kollef, Clinical Infectious Diseases and undefined 2008, Broad-Spectrum Antimicrobials and the Treatment of Serious Bacterial Infections: Getting it Right Up Front. academic.oup.com, no. 1 (2008), p. 47. https://doi.org/10.1086/590061

  10. D.S. Kwon, E. Mylonakis, Posaconazole: a new broad-spectrum antifungal agent. Expert Opin. Pharmacother. 8(8), 1167–1178 (2007). https://doi.org/10.1517/14656566.8.8.1167

    Article  CAS  Google Scholar 

  11. G. Navarrete-Vazquez, F. Chávez-Silva, et al., Bioorganic & medicinal, and undefined 2011, Synthesis of Benzologues of Nitazoxanide and Tizoxanide: A Comparative Study of their In Vitro Broad-Spectrum Antiprotozoal Activity (Elsevier). Accessed: 19 Jul 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S0960894X11002848

  12. A.J. Huh, Y.J. Kwon, Journal of controlled release, and undefined 2011, ‘Nanoantibiotics’: A New Paradigm for Treating Infectious Diseases Using Nanomaterials in the Antibiotics Resistant Era (Elsevier). Accessed: 20 Jul 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S0168365911004792

  13. A.K. Marr, W.J. Gooderham, R.E. Hancock, K. Bush, L. Silver, Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Elsevier 6, 468–472 (2006). https://doi.org/10.1016/j.coph.2006.04.006

    Article  CAS  Google Scholar 

  14. G. Calabrese, et al., A new Ag-nanostructured hydroxyapatite porous scaffold: antibacterial effect and cytotoxicity study. Mater. Sci. Eng. C 118 (2021). https://doi.org/10.1016/J.MSEC.2020.111394

  15. V.K. Sharma, R.A. Yngard, Y. Lin, Advances in colloid and interface science, and undefined 2009, Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities, vol. 145, no. 1–2 (Elsevier, 2008), pp. 83–96. https://doi.org/10.1016/j.cis.2008.09.002

  16. J. Ramirez, et al., The Bactericidal Effect of Silver Nanoparticles. iopscience.iop.org, vol. 16, no. 10 (2005), pp. 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059

  17. W.R. Li, X.B. Xie, Q.S. Shi, H.Y. Zeng, Y.S. Ou-Yang, et al., Applied microbiology, and undefined 2010, Antibacterial Activity and Mechanism of Silver Nanoparticles on Escherichia coli, vol. 85, no. 4 (Springer, Heidelberg, 2009), pp. 1115–1122. https://doi.org/10.1007/s00253-009-2159-5

  18. D. McShan, P.C. Ray, H. Yu, Molecular toxicity mechanism of nanosilver. J. Food Drug Anal. 22(1), 116–127 (2014). https://doi.org/10.1016/J.JFDA.2014.01.010

    Article  CAS  Google Scholar 

  19. Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus aureus (2000). https://doi.org/10.1002/1097-4636(20001215)52:4

  20. Y. Matsumura, K. Yoshikata, S. Ichi Kunisaki, T. Tsuchido, Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69(7), 4278–4281 (2003). https://doi.org/10.1128/AEM.69.7.4278-4281.2003

  21. S.C. Abeylath, E. Turos, Drug delivery approaches to overcome bacterial resistance to β-lactam antibiotics. Expert Opin. Drug Deliv. 5(9), 931–949 (2008). https://doi.org/10.1517/17425247.5.9.931

    Article  CAS  Google Scholar 

  22. M. Bradford, A.W. Readman, J.W. Somerfield, P.J. Handy, R.D. An, An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Elsevier (2009). https://doi.org/10.1016/j.marenvres.2009.07.001

    Article  Google Scholar 

  23. Silver Nanoparticles as Potential Antibacterial Agents. mdpi.com. Accessed: 20 Jul 2022 (Online). Available: https://www.mdpi.com/1420-3049/20/5/8856

  24. K.C. Bhol, P.J. Schechter, Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis. Dig. Dis. Sci. 52(10), 2732–2742 (2007). https://doi.org/10.1007/S10620-006-9738-4

    Article  CAS  Google Scholar 

  25. S. Jacob Inbaneson, S. Ravikumar, N. Manikandan, Antibacterial potential of silver nanoparticles against isolated urinary tract infectious bacterial pathogens. Appl. Nanosci. 1(4), 231–236 (2011). https://doi.org/10.1007/S13204-011-0031-2

  26. F. Piccinno, F. Gottschalk, S. Seeger, et al., Journal of nanoparticle research, and undefined 2012, Industrial Production Quantities and Uses of Ten Engineered Nanomaterials in Europe and the World, vol. 14, no. 9 (Springer, Heidelberg, 2012). https://doi.org/10.1007/s11051-012-1109-9

  27. Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325–2331 (2011). https://doi.org/10.1128/AEM.02149-10

    Article  CAS  Google Scholar 

  28. A.A. Tayel et al., Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. Wiley Online Libr. 31(2), 211–218 (2011). https://doi.org/10.1111/j.1745-4565.2010.00287.x

    Article  CAS  Google Scholar 

  29. N. Sangeetha, K.A. Kuppusamy, Journal of Nanobiotechnology, and undefined 2013, Extracellular Synthesis of Zinc Oxide Nanoparticle Using Seaweeds of Gulf of Mannar, India. cabdirect.org. Accessed: 20 Jul 2022 (Online). Available: https://www.cabdirect.org/cabdirect/abstract/20163258613

  30. T. Jin, D. Sun, J. Y. Su, H. Zhang, H.J. Sue, Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J. Food Sci. 74(1) (2009). https://doi.org/10.1111/J.1750-3841.2008.01013.X

  31. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli (Elsevier). Accessed: 20 Jul 2022 )(Online). Available: https://www.sciencedirect.com/science/article/pii/S1438422114001532

  32. S. Khan, M. Ahamed, A. Al-Khedhairy, J. M.-M. Letters, and undefined 2013, Biocidal Effect of Copper and Zinc Oxide Nanoparticles on Human Oral Microbiome and Biofilm Formation, vol. 97 (Elsevier, 2013), pp. 67–70. https://doi.org/10.1016/j.matlet.2013.01.085

  33. S.T. Khan, J. Ahmad, M. Ahamed, J. Musarrat, A.A. Al-Khedhairy, Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis. J. Biol. Inorg. Chem. 21(3), 295–303 (2016). https://doi.org/10.1007/S00775-016-1339-X

    Article  CAS  Google Scholar 

  34. S.T. Khan, A.A. Al-Khedhairy, J. Musarrat, Journal of Nanoparticle Research, and undefined 2015, ZnO and TiO2 Nanoparticles as Novel Antimicrobial Agents for Oral Hygiene: A Review, vol. 17, no. 6 (Springer, Heidelberg, 2015). https://doi.org/10.1007/s11051-015-3074-6

  35. N. Carneiro, A. Zille, R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Elsevier 79, 5–18 (2010). https://doi.org/10.1016/j.colsurfb.2010.03.029

    Article  CAS  Google Scholar 

  36. A.A. Keller, S. McFerran, A. Lazareva, S. Suh, Global life cycle releases of engineered nanomaterials. J. Nanoparticle Res. 15(6) (2013). https://doi.org/10.1007/S11051-013-1692-4

  37. O. Bondarenko, A. Ivask, K. Kasemets, M. Mortimer, Angela Ivask, Kaja Kasemets, Monika Mortimer & Anne Kahru. researchgate.net, vol. 87, no. 7 (2013), pp. 1181–1200. https://doi.org/10.1007/s00204-013-1079-4

  38. C. Yang Bai, et al., In situ growth of a ZnO nanowire network within a TiO2 nanoparticle film for enhanced dye‐sensitized solar cell performance. Wiley Online Libr. 24(43), 5850–5856 (2012). https://doi.org/10.1002/adma.201201992

  39. P. Sutradhar, M. Saha, D. Maiti, Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J. Nanostructure Chem. 4(1) (2014). https://doi.org/10.1007/S40097-014-0086-1

  40. G. Ren, D. Hu, E.W. Cheng, M.A. Vargas-Reus, P. Reip, et al., Google Scholar. https://scholar.google.com.pk/scholar?hl=en&as_sdt=0%2C5&q=G.+Ren%2C+D.+Hu%2C+E.W.+Cheng%2C+M.A.+Vargas-Reus%2C+P.+Reip%2C+R.P.+Allaker%2C+International+journal+of+antimicrobial+agents+33+%282009%29+587-590.&btnG= Accessed 20 Jul 2022

  41. G. Ren, R.P. Allaker, M.A. Vargas-Reus, K. Memarzadeh, J. Huang, G.G. Ren, Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Elsevier 40, 135–139 (2012). https://doi.org/10.1016/j.ijantimicag.2012.04.012

    Article  CAS  Google Scholar 

  42. M. Ahamed, H.A. Alhadlaq, M.A.M. Khan, P. Karuppiah, N.A. Al-Dhabi, Synthesis, Characterization, and Antimicrobial Activity of Copper Oxide Nanoparticles. dl.acm.org (2014). https://doi.org/10.1155/2014/637858

  43. P.G. Bhavyasree, T.S. Xavier, Green synthesised copper and copper oxide based nanomaterials using plant extracts and their application in antimicrobial activity: review. Curr. Res. Green Sustain. Chem. 5 (2022). https://doi.org/10.1016/J.CRGSC.2021.100249

  44. A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, N. Von Goetz, Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46(4), 2242–2250 (2012). https://doi.org/10.1021/ES204168D

    Article  CAS  Google Scholar 

  45. K. Kühn, I. Chaberny, K. Massholder, M. Stickler, et al., Chemosphere, and undefined 2003, Disinfection of Surfaces by Photocatalytic Oxidation with Titanium Dioxide and UVA Light (Elsevier). https://doi.org/10.1016/S0045-6535(03)00362-X

  46. R. Richards et al., Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials. J. Am. Chem. Soc. 122(20), 4921–4925 (2000). https://doi.org/10.1021/JA994383G

    Article  CAS  Google Scholar 

  47. O.B. Koper, J.S. Klabunde, G.L. Marchin, K.J. Klabunde, P. Stoimenov, L. Bohra, Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of Bacillus species, viruses, and toxins. Curr. Microbiol. 44(1), 49–55 (2002). https://doi.org/10.1007/S00284-001-0073-X

    Article  CAS  Google Scholar 

  48. Comparative Effectiveness of NiCl2, Ni-and NiO-NPs in Controlling Oral Bacterial Growth and Biofilm Formation on Oral Surfaces (Elsevier). Accessed: 20 Jul 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S0003996913003075

  49. M. Khanal et al., Selective antimicrobial and antibiofilm disrupting properties of functionalized diamond nanoparticles against Escherichia coli and Staphylococcus aureus. Wiley Online Libr. 32(8), 822–830 (2015). https://doi.org/10.1002/ppsc.201500027

    Article  CAS  Google Scholar 

  50. A. Chatterjee, et al., Antibacterial Effect of Ultrafine Nanodiamond Against Gram-Negative Bacteria Escherichia coli. spiedigitallibrary.org, vol. 20, no. 5 (2015), p. 051014. https://doi.org/10.1117/1.JBO.20.5.051014

  51. H.J. Jian et al., Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano 11(7), 6703–6716 (2017). https://doi.org/10.1021/ACSNANO.7B01023

    Article  CAS  Google Scholar 

  52. Y. Zeng, Q. Wang, Q. Zhang, W. Jiang, Quantification of C60-induced membrane disruption using a quartz crystal microbalance. RSC Adv. 8(18), 9841–9849 (2018). https://doi.org/10.1039/C7RA13690K

    Article  CAS  Google Scholar 

  53. S. Kang, M. Herzberg, D.F. Rodrigues, M. Elimelech, Langmuir, and undefined 2008, Antibacterial effects of carbon nanotubes: size does matter!. ACS Publ. 24(13), 6409–6413 (2008). https://doi.org/10.1021/la800951v

  54. S. Liu et al., Sharper and faster ‘Nano darts’ kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3(12), 3891–3902 (2009). https://doi.org/10.1021/NN901252R

    Article  CAS  Google Scholar 

  55. H. Chen et al., Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 9(16), 2735–2746 (2013). https://doi.org/10.1002/SMLL.201202792

    Article  CAS  Google Scholar 

  56. O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10), 5731–5736 (2010). https://doi.org/10.1021/NN101390X

    Article  CAS  Google Scholar 

  57. X. Lu et al., Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. U. S. A. 114(46), E9793–E9801 (2017). https://doi.org/10.1073/PNAS.1710996114

    Article  CAS  Google Scholar 

  58. Y. Li et al., Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. U. S. A. 110(30), 12295–12300 (2013). https://doi.org/10.1073/PNAS.1222276110

    Article  CAS  Google Scholar 

  59. L.R. Arias, L. Yang, Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25(5), 3003–3012 (2009). https://doi.org/10.1021/LA802769M

    Article  CAS  Google Scholar 

  60. S. Aslan, C.Z. Loebick, S. Kang, M. Elimelech, L.D. Pfefferle, et al., Nanoscale, and undefined 2010, Antimicrobial biomaterials based on carbon nanotubes dispersed in poly (lactic-co-glycolic acid). pubs.rsc.org. Accessed: 25 Jul 2022 (Online). Available: https://pubs.rsc.org/en/content/articlehtml/2010/nr/c0nr00329h

  61. Q. Xin et al., Antibacterial carbon-based nanomaterials. Adv. Mater. 31(45) (2019). https://doi.org/10.1002/ADMA.201804838

  62. Y.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15(1) (2017). https://doi.org/10.1186/S12951-017-0308-Z

  63. A. Friedman et al., Susceptibility of gram-positive and-negative bacteria to novel nitric oxide-releasing nanoparticle technology. Taylor Fr. 2(3), 217–221 (2011). https://doi.org/10.4161/viru.2.3.16161

    Article  Google Scholar 

  64. M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, et al., Google Scholar. https://scholar.google.com.pk/scholar?hl=en&as_sdt=0%2C5&q=M.+J.+Hajipour%2C+K.+M.+Fromm%2C+A.+A.+Ashkarran%2C+D.+J.+de+Aberasturi%2C+I.+R.+de+Larramendi%2C+T.+Rojo%2C+V.+Serpooshan%2C+W.+J.+Parak%2C+M.+Mahmoudi%2C+Trends+Biotechnol.+2012%2C+30%2C+499&btnG= Accessed 25 Jul 2022

  65. K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi, K.A. Mahmoud, Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10(3), 3674–3684 (2016). https://doi.org/10.1021/ACSNANO.6B00181

    Article  CAS  Google Scholar 

  66. X. Zou, L. Zhang, Z. Wang, Y. Luo, Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 138(7), 2064–2077 (2016). https://doi.org/10.1021/JACS.5B11411

    Article  CAS  Google Scholar 

  67. I. Perelshtein, A. Lipovsky, N. Perkas, A. Gedanken, E. Moschini, P. Mantecca, The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties. Nano Res. 8(2), 695–707 (2015). https://doi.org/10.1007/S12274-014-0553-5

    Article  CAS  Google Scholar 

  68. L. Zhang, R.L. Gallo, Current Biology, and undefined 2016, Antimicrobial Peptides (Elsevier). Accessed: 25 Jul 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S0960982215014098

  69. G. Wang, C.M. Zietz, A. Mudgapalli, S. Wang, Z. Wang, The evolution of the antimicrobial peptide database over 18 years: milestones and new features. Protein Sci. 31(1), 92–106 (2022). https://doi.org/10.1002/PRO.4185

    Article  CAS  Google Scholar 

  70. T.H. Lee, K.N. Hall, M.I. Aguilar, Curr. Top...., Google Scholar. https://scholar.google.com.pk/scholar?hl=en&as_sdt=0%2C5&q=T.+H.+Lee%2C+K.+N.+Hall%2C+M.+I.+Aguilar%2C+Curr.+Top.+Med.+Chem.+2016%2C+16%2C+25&btnG= Accessed 25 Jul 2022

  71. Annie: Antibacterial nanoparticles endodontics: a... Google Scholar. https://scholar.google.com/scholar?q=related:7iHiV_LNzHkJ:scholar.google.com/&scioq=Antibacterial+Nanoparticles+Endodontics:+A+Narrative+Review+Annie+Shrestha,+BDS,+MSc,+PhD,+and+Anil+Kishen,+BDS,+MDS,+PhD&hl=en&as_sdt=0,5 Accessed 31 Jul 2022

  72. Ultrahigh Adsorption Capacity of Anionic Dyes with Sharp Selectivity Through the Cationic Charged Hybrid Nanofibrous Membranes (Elsevier). Accessed: 25 Jul 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S1385894716315625

  73. H. Bao et al., New toxicity mechanism of silver nanoparticles: promoting apoptosis and inhibiting proliferation. PLoS One 10(3) (2015). https://doi.org/10.1371/JOURNAL.PONE.0122535

  74. Y. Cui, et al., The Molecular Mechanism of Action of Bactericidal Gold Nanoparticles on Escherichia coli (Elsevier). Accessed: 25 Jul 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S0142961211014116

  75. S.H. Cha, J. Hong, M. McGuffie, B. Yeom, J.S. Vanepps, N.A. Kotov, Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano 9(9), 9097–9105 (2015). https://doi.org/10.1021/ACSNANO.5B03247

    Article  CAS  Google Scholar 

  76. A. Mansi, F. Boccuni, S. Iavicoli, Industrial health, and undefined 2019, Nanomaterials as a New Opportunity for Protecting Workers from Biological Risk. jstage.jst.go.jp. Accessed: 25 Jul 2022 (Online). Available: https://www.jstage.jst.go.jp/article/indhealth/advpub/0/advpub_2018-0197/_article/-char/ja/

  77. K.K. Chenab, B. Sohrabi, A. Rahmanzadeh, Biomaterials science, and undefined 2019, Superhydrophobicity: Advanced Biological and Biomedical Applications. pubs.rsc.org. Accessed: 25 Jul 2022 (Online). Available: https://pubs.rsc.org/en/content/articlehtml/2019/bm/c9bm00558g

  78. P.G. Bhavyasree, T.S. Xavier, Current Research in Green and Sustainable, and undefined 2022, Green Synthesised Copper and Copper Oxide Based Nanomaterials Using Plant Extracts and Their Application in Antimicrobial Activity (Elsevier). Accessed: 25 Jul 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S266608652100196X

  79. T.C. Dakal, A. Kumar, R.S. Majumdar, V. Yadav, Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 7 (2016). https://doi.org/10.3389/FMICB.2016.01831/FULL

  80. A. Baranwal, A. Srivastava, P. Kumar, V.K. Bajpai, P.K. Maurya, P. Chandra, Prospects of nanostructure materials and their composites as antimicrobial agents. Front. Microbiol. 9 (2018). https://doi.org/10.3389/FMICB.2018.00422/FULL

  81. R. Javed, M. Zia, S. Naz, S.O. Aisida, N. ul Ain, Q. Ao, Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J. Nanobiotechnol. 18(1) (2020). https://doi.org/10.1186/S12951-020-00704-4

  82. R.G. Chaudhary, G.S. Bhusari, A.D. Tiple, et al., Current, and undefined 2019, Metal/Metal Oxide Nanoparticles: Toxicity, Applications, and Future Prospects. ingentaconnect.com. Accessed: 25 Jul 2022 (Online). Available: https://www.ingentaconnect.com/content/ben/cpd/2019/00000025/00000037/art00009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haider .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haider, A., Ikram, M., Rafiq, A. (2023). Nanomaterials; Potential Antibacterial Agents. In: Green Nanomaterials as Potential Antimicrobials. Springer, Cham. https://doi.org/10.1007/978-3-031-18720-9_7

Download citation

Publish with us

Policies and ethics