Skip to main content

Antimicrobials; Drug Resistance

  • Chapter
  • First Online:
Green Nanomaterials as Potential Antimicrobials

Abstract

The introduction of antimicrobial medicines into widespread clinical use is a landmark point in the history of modern medicine. To avoid the establishment and spread of antibacterial resistance, it will be required to retain current antimicrobials by ensuring their correct use and to discover and develop new agents. Despite the need for innovative agents, a number of significant pharmaceutical companies have decided to withdraw from antimicrobial research, notably the creation of antimicrobial medications. Chemical compounds were the first antibacterial agents discovered. In 1909, Paul Ehrlich created arsphenamine, an arsenic analog that was efficient against Treponema pallidum, the causal cause of syphilis. Extended-spectrum antibacterial agents are those that are effective against both Gram-positive and Gram-negative pathogens. From a therapeutic viewpoint, ampicillin is best for treating patients with the most suited single antibiotic for the infecting organism. This method reduces the probability of superinfection, the emergence of resistant organisms, and toxicity. Antimicrobial resistance initially appeared in the late 1930s and early 1940s, soon after the release of the first antibacterial medications, sulfamides, and penicillin. Common bacteria such as Staphylococcus aureus strains gained resistance to many antibiotic families at an unprecedented pace. During the first quarter century after the release of the first antibiotics, hospitalized patients were largely affected by resistance. Diffusion through porins, diffusion over a bilayer, and self-uptake are all viable methods for drug transfer into a cell. Gram-negative bacteria's outer membrane (OM) has porin channels. Only porins let small hydrophilic molecules (ß-lactams and quinolones) to get through the outer membrane. The decrease in the number of porin channels decreased the amount of ß-lactam and FQ antibiotics that entered the cell, leading in resistance to these antibiotic families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.H. Powers, Antimicrobial drug development—the past, the present, and the future. Clin. Microbiol. Infect. Suppl. 10(4), 23–31 (2004). https://doi.org/10.1111/J.1465-0691.2004.1007.X

    Article  Google Scholar 

  2. F. Schwentker, S. Gelman, P.H. Long, and undefined 1937, The Treatment of Meningococcic Meningitis with Sulfanilamide: Preliminary Report, jamanetwork.com. Accessed: 13 Jul 2022. [Online]. Available: https://jamanetwork.com/journals/jama/article-abstract/276869

  3. M. Pećanac, Z. Janjić, A. Komarčević, and undefined 2013, Burns Treatment in Ancient Times, scindeks.ceon.rs. Accessed: 13 Jul 2022 [Online]. Available: https://scindeks.ceon.rs/article.aspx?artid=0025-81051306263P

  4. K. L.-N. reviews D. discovery and undefined 2013, “Platforms for antibiotic discovery,” nature.com, vol. 12, no. 5, pp. 371–387, May 2013, doi: https://doi.org/10.1038/nrd3975.

  5. “Fleming A. Penicillin. Nobel Lecture. 1945. - Google Scholar.” https://scholar.google.com.pk/scholar?hl=en&as_sdt=0%2C5&q=Fleming+A.+Penicillin.+Nobel+Lecture.+1945.&btnG= Accessed 13 Jul 2022

  6. O. T. Avery, R. Dubos, The specific action of a bacterial enzyme on pneumococci of type III, Science (80-) 72(1858), 151–152 (1930). https://doi.org/10.1126/SCIENCE.72.1858.151

  7. R. Dubos, R.J. Hotchkis, of experimental medicine, and undefined 1941, The Production of Bactericidal Substances by Aerobic Sporulating bacilli, rupress.org, Accessed: 13 Jul 2022 (Online). Available: https://rupress.org/jem/article-abstract/73/5/629/4523

  8. W.E. Herrell, D. Heilman, Experimental and clinical studies on gramicidin 1. J. Clin. Invest. 20(5), 583–591 (1941). https://doi.org/10.1172/JCI101251

    Article  CAS  Google Scholar 

  9. K. Lewis, Nature and undefined 2012, Recover the Lost Art of Drug Discovery, nature.com. Accessed: 13 Jul 2022 (Online). Available: https://www.nature.com/articles/485439a

  10. S.A. Waksman, W.B. Geiger, D.M. Reynolds, Strain specificity and production of antibiotic substances: VII. Production of actinomycin by different actinomycetes. Proc. Natl. Acad. Sci. U. S. A. 32(5), 117–120 (1946). https://doi.org/10.1073/PNAS.32.5.117

    Article  CAS  Google Scholar 

  11. T. Dobzhansky, Science and undefined 1944, Genes and the Man (Scientific Books: Genes and the Man). ui.adsabs.harvard.edu. Accessed: 13 Jul 2022 (Online). Available: https://ui.adsabs.harvard.edu/abs/1944Sci...100..103G/abstract

  12. S.A. Waksman, H.A. Lechevalier, Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science (80-) 109(2830), 305–307 (1949). https://doi.org/10.1126/SCIENCE.109.2830.305

  13. S.A. Waksman, E.S. Horning, E.L. Spencer, The production of two antibacterial substances, fumigacin and clavacin. Science (80-) 96(2487), 202–203 (1942). https://doi.org/10.1126/SCIENCE.96.2487.202

  14. Streptomycin treatment of pulmonary tuberculosis. Br. Med. J. 2(4582), 769–782 (1948). https://doi.org/10.1136/BMJ.2.4582.769

  15. M.E. Falagas, T. Skalidis, K.Z. Vardakas, N.J. Legakis, et al., Google Scholar. https://scholar.google.com.pk/scholar?hl=en&as_sdt=0%2C5&q=Falagas+ME%2C+Skalidis+T%2C+Vardakas+KZ%2C+Legakis+NJ%2C+Hellenic+Cefiderocol+Study+Group.+Activity+of+cefiderocol+%28S649266%29+against+carbapenem-resistant+Gram-negative+bacteria+collected+from+inpatients+in+Greek+hospitals.+J+Antimicrob+Chemother+2017%3B72%3A1704–8.+doi%3A10.1093%2Fjac%2Fdkx049.&btnG= Accessed 13 Jul 2022

  16. K. Whalen, Lippincott® Illustrated Reviews: Pharmacology (2018). Accessed: 14 Jul 2022 (Online). Available: https://books.google.com.pk/books?hl=en&lr=&id=8ivvDwAAQBAJ&oi=fnd&pg=PP1&dq=lippincott+illustrated+reviews+pharmacology+4th+edition&ots=IC0gtuaeGI&sig=zkp9TxFn_cHZ6gTFlHe08k-ouUA

  17. D. Kahne, C. Leimkuhler, W. Lu, C. Walsh, Glycopeptide and lipoglycopeptide antibiotics. Chem. Rev. 105(2), 425–448 (2005). https://doi.org/10.1021/CR030103A

    Article  CAS  Google Scholar 

  18. P.E. Reynolds, Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 8(11), 943–950 (1989). https://doi.org/10.1007/BF01967563

    Article  CAS  Google Scholar 

  19. G. Kapoor, S. Saigal, A. Elongavan, J. of anaesthesiology, and undefined 2017, Action and Resistance Mechanisms of Antibiotics: A Guide for Clinicians. ncbi.nlm.nih.gov. Accessed: 14 Jul 2022 (Online). Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672523/

  20. S. Džidić, J. Šušković, B. Kos, and undefined 2008, Antibiotic Resistance Mechanisms in Bacteria: Biochemical and Genetic Aspects. search.ebscohost.com. Accessed: 14 Jul 2022 (Online). Available: https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=13309862&asa=Y&AN=31759961&h=9vz5VrDk%2FkerkYnNTzsyqxo%2FSC0uwtlgVVOTMV0ZuBCblNGqgVHFxvsb5cuVPeAvIF12s7CIl97AiiicqMVRmg%3D%3D&crl=c

  21. H. Grundmann, M. Aires-de-Sousa, J. Boyce, lancet, and undefined 2006, Emergence and Resurgence of Meticillin-Resistant Staphylococcus aureus as a Public-Health Threat (Elsevier). Accessed: 14 Jul 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S0140673606688533

  22. K. Hiramatsu, infectious diseases and undefined 2001, Vancomycin-Resistant Staphylococcus aureus: A New Model of Antibiotic Resistance, vol. 1 (Elsevier, 2001). https://doi.org/10.1016/S1473-3099(01)00091-3

  23. H. Yoneyama, R. Katsumata, Bioscience, undefined biotechnology, undefined and, and undefined 2006, Antibiotic Resistance in Bacteria and its Future for Novel Antibiotic Development. jstage.jst.go.jp. Accessed: 14 Jul 2022 (Online). Available: https://www.jstage.jst.go.jp/article/bbb/70/5/70_5_1060/_article/-char/ja/

  24. N.J. Johnston, T.A. Mukhtar, G.D. Wright, drug targets, and undefined 2002, Streptogramin Antibiotics: Mode of Action and Resistance. ingentaconnect.com. Accessed: 14 Jul 2022 (Online). Available: https://www.ingentaconnect.com/content/ben/cdt/2002/00000003/00000004/art00005

  25. P. Vannuffel, C. Cocito, Mechanism of action of streptogramins and macrolides. Drugs 51(Suppl. 1), 20–30 (1996). https://doi.org/10.2165/00003495-199600511-00006

    Article  CAS  Google Scholar 

  26. R. Wise, Canadian respiratory journal and undefined 1999, A Review of the Mechanisms of Action and Resistance of Antimicrobial Agents. europepmc.org. Accessed: 14 Jul 2022 (Online). Available: https://europepmc.org/article/med/10202228

  27. B. Bozdogan, P.C. Appelbaum, I. journal of antimicrobial agents, and undefined 2004, Oxazolidinones: Activity, Mode of Action, and Mechanism of Resistance, vol. 23 (Elsevier, 2004), pp. 113–119. https://doi.org/10.1016/j.ijantimicag.2003.11.003

  28. P.A. Lambert, A. drug delivery reviews and undefined 2005, Bacterial Resistance to Antibiotics: Modified Target Sites (Elsevier). Accessed: 14 Jul 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S0169409X05000992

  29. P.G. Higgins, A.C. Fluit, F.J. Schmitz, C. drug targets, and undefined 2003, Fluoroquinolones: Structure and Target Sites. ingentaconnect.com. Accessed: 14 Jul 2022 (Online). Available: https://www.ingentaconnect.com/content/ben/cdt/2003/00000004/00000002/art00007

  30. F.C. Tenover, Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 119(6), S3–S10 (2006). https://doi.org/10.1016/J.AMJMED.2006.03.011

    Article  CAS  Google Scholar 

  31. N.V. Sipsas, G.P. Bodey, D.P. Kontoyiannis, Perspectives for the management of febrile neutropenic patients with cancer in the 21st century. Cancer 103(6), 1103–1113 (2005). https://doi.org/10.1002/CNCR.20890

    Article  Google Scholar 

  32. B.A. Oppenheim, T. J. of antimicrobial chemotherapy and undefined 1998, The Changing Pattern of Infection in Neutropenic Patients. academic.oup.com (1998). Accessed: 14 Jul 2022 (Online). Available: https://academic.oup.com/jac/article-abstract/41/suppl_4/7/696336

  33. M.H. Kollef, V.J. Fraser, Antibiotic resistance in the intensive care unit. Ann. Intern. Med. 134(4), 298–314 (2001). https://doi.org/10.7326/0003-4819-134-4-200102200-00014

    Article  CAS  Google Scholar 

  34. S. Nseir, et al., First-Generation Fluoroquinolone Use and Subsequent Emergence of Multiple Drug-Resistant Bacteria in the Intensive Care Unit. journals.lww.com (2005). https://doi.org/10.1097/01.CCM.0000152230.53473.A1

  35. J. Picazo, Clinical infectious diseases and undefined 2004, Management of the Febrile Neutropenic Patient: A Consensus Conference. academic.oup.com. Accessed: 14 Jul 2022 (Online). Available: https://academic.oup.com/cid/article-abstract/39/Supplement_1/S1/399622

  36. S.B. Levy, From Tragedy the Antibiotic Era is Born.... Google Scholar. https://scholar.google.com.pk/scholar?hl=en&as_sdt=0%2C5&q=Levy+SB.+From+tragedy+the+antibiotic+era+is+born.+In%3A+Levy+SB%2C+ed.+The+Antibiotic+Paradox%3A+How+the+Misuse+of+Antibiotics+Destroys+Their+Curative+Powers%2C+2nd+ed.+Cambridge%2C+MA%3A+Perseus+Publishing%3B2002.+pp.+1–14.&btnG= Accessed 14 Jul 2022

  37. C.H. Rammelkamp, T. Maxon, Resistance of Staphylococcus aureus> to the action of Penicillin. Proc. Soc. Exp. Biol. Med. 51(3), 386–389 (1942). https://doi.org/10.3181/00379727-51-13986

    Article  CAS  Google Scholar 

  38. J.H. Jorgensen, Clinical infectious diseases and undefined 1992, Update on Mechanisms and Prevalence of Antimicrobial Resistance in Haemophilus influenza. academic.oup.com. Accessed: 14 Jul 2022 (Online). Available: https://academic.oup.com/cid/article-abstract/14/5/1119/345504

  39. J.D. Williams, F. Moosdeen, Reviews of Infectious Diseases, and undefined 1986, Antibiotic Resistance in Haemophilus influenzae: Epidemiology, Mechanisms, and Therapeutic Possibilities. academic.oup.com. Accessed: 14 Jul 2022 (Online). Available: https://academic.oup.com/cid/article-abstract/8/Supplement_5/S555/314827

  40. I. Lind - Scand., J. Infect. Dis. Suppl. and undefined 1990, Epidemiology of Antibiotic Resistant Neisseria Gonorrhoeae in Industrialized and Developing Countries. Taylor Fr. Accessed: 14 Jul 2022 (Online). Available: https://www.tandfonline.com/doi/pdf/10.3109/inf.1989.21.suppl-69.01#page=79

  41. H.W. Jaffe, J.W. Biddle, S.R. Johnson, P.J. Wiesner, The Journal of Infectious, and undefined 1981, Infections due to penicillinase-producing Neisseria gonorrhoeae in the United States: 1976–1980. JSTOR. Accessed: 14 Jul 2022 (Online). Available: https://www.jstor.org/stable/30082015

  42. M.A. Espinal et al., Global trends in resistance to antituberculosis drugs. N. Engl. J. Med. 344(17), 1294–1303 (2001). https://doi.org/10.1056/NEJM200104263441706

    Article  CAS  Google Scholar 

  43. F.D. Lowy, The Journal of clinical investigation and undefined 2003, Antimicrobial resistance: the example of Staphylococcus aureus. Am. Soc. Clin. Investig. Accessed: 14 Jul 2022 (Online). Available: https://www.jci.org/articles/view/18535

  44. S. Deresinski, Clinical infectious diseases and undefined 2005, Methicillin-Resistant Staphylococcus aureus: An Evolutionary, Epidemiologic, and Therapeutic Odyssey. academic.oup.com. Accessed: 14 Jul 2022 (Online). Available: https://academic.oup.com/cid/article-abstract/40/4/562/353410

  45. T. F.-M. M. Microbiology and undefined 2002, Staphylococcus aureus (Elsevier). https://doi.org/10.1172/JCI200422123

  46. P.D. Fey et al., Ceftriaxone-resistant salmonella infection acquired by a child from cattle. N. Engl. J. Med. 342(17), 1242–1249 (2000). https://doi.org/10.1056/NEJM200004273421703

    Article  CAS  Google Scholar 

  47. H.C. Wegener, The consequences for food safety of the use of fluoroquinolones in food animals. N. Engl. J. Med. 340(20), 1581–1582 (1999). https://doi.org/10.1056/NEJM199905203402010

    Article  CAS  Google Scholar 

  48. K.E. Smith et al., Quinolone-resistant Campylobacter jejuni infections in Minnesota, 1992–1998. N. Engl. J. Med. 340(20), 1525–1532 (1999). https://doi.org/10.1056/NEJM199905203402001

    Article  CAS  Google Scholar 

  49. D.G. White et al., The isolation of antibiotic-resistant salmonella from retail ground meats. N. Engl. J. Med. 345(16), 1147–1154 (2001). https://doi.org/10.1056/NEJMOA010315

    Article  CAS  Google Scholar 

  50. M.E. Rupp, P.D. Fey, Extended spectrum β-lactamase (ESBL)-producing enterobacteriaceae: considerations for diagnosis, prevention and drug treatment. Drugs 63(4), 353–365 (2003). https://doi.org/10.2165/00003495-200363040-00002

    Article  CAS  Google Scholar 

  51. G.W. Waterer, R.G. Wunderink, Critical care medicine care medicine, and undefined 2001, Increasing Threat of Gram-Negative Bacteria. journals.lww.com. Accessed: 14 Jul 2022 (Online). Available: https://journals.lww.com/ccmjournal/Fulltext/2001/04001/Colonization_with_broad_spectrum.00004.aspx

  52. A. Pantosti, M.L. Moro, Clinical Infectious Diseases, and undefined 2005, Antibiotic Use: The Crystal Ball for Predicting Antibiotic Resistance. academic.oup.com. Accessed: 14 Jul 2022 (Online). Available: https://academic.oup.com/cid/article-abstract/40/9/1298/371255

  53. O.G. Vanderkooi, D.E. Low, K. Green, et al., Clinical Infectious, and undefined 2005, Predicting Antimicrobial Resistance in Invasive Pneumococcal Infections. academic.oup.com. Accessed: 14 Jul 2022 (Online). Available: https://academic.oup.com/cid/article-abstract/40/9/1288/371018

  54. R. Gonzales, D.C. Malone, J.H. Maselli, et al., Clinical infectious diseases, and undefined 2001, Excessive Antibiotic Use for Acute Respiratory Infections in the United States. academic.oup.com. Accessed: 14 Jul 2022 (Online). Available: https://academic.oup.com/cid/article-abstract/33/6/757/328318

  55. D. Guillemot, Current opinion in microbiology and undefined 1999, Antibiotic Use in Humans and Bacterial Resistance (Elsevier). Accessed: 14 Jul 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S1369527499000065

  56. S. Monroe, R. Polk, Current opinion in microbiology, and undefined 2000, Antimicrobial Use and Bacterial Resistance (Elsevier). Accessed: 14 Jul 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S1369527400001296

  57. D.M. Livermore, M.N. Dudley, Current opinion in microbiology, and undefined 2000, Antimicrobials: Better Use, Better Drugs, or Both?. infona.pl. Accessed: 14 Jul 2022 (Online). Available: https://www.infona.pl/resource/bwmeta1.element.elsevier-dfea37a1-725f-3594-b4c9-87f4cc3475a5

  58. P.A. Lambert, Journal of the royal society of medicine and undefined 2002, Mechanisms of Antibiotic Resistance in Pseudomonas aeruginosa. ncbi.nlm.nih.gov. Accessed: 14 Jul 2022 (Online). Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1308633/

  59. F.C. Tenover, The American journal of medicine and undefined 2006, Mechanisms of Antimicrobial Resistance in Bacteria (Elsevier). Accessed 14 Jul 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S0002934306003421

  60. M.N. Alekshun, S.B. Levy, Cell, and undefined 2007, Molecular Mechanisms of Antibacterial Multidrug Resistance (Elsevier). Accessed: 14 Jul 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S009286740700311X

  61. K. Hiramatsu, L. Cui, M. Kuroda, T. Ito, Trends in microbiology, and undefined 2001, The Emergence and Evolution of Methicillin-Resistant Staphylococcus aureus (Elsevier, 2001). Accessed: 14 Jul 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S0966842X01021758

  62. A. Giedraitienė, A. Giedraitienė, A. Vitkauskienė, R. Naginienė, A. Pavilonis, Antibiotic Resistance Mechanisms of Clinically Important Bacteria. mdpi.com, vol. 47, no. 3 (2011), pp. 137–183, Accessed: 14 Jul 2022 (Online). Available: https://www.mdpi.com/283140

  63. Y.H. Kim, C.J. Cha, C.E. Cerniglia, FEMS microbiology letters, and undefined 2002, Purification and Characterization of an Erythromycin Esterase from an Erythromycin-Resistant Pseudomonas sp. academic.oup.com. Accessed: 14 Jul 2022 (Online). Available: https://academic.oup.com/femsle/article-abstract/210/2/239/488878

  64. M.N. Alekshun, S.B. Levy, Cell, and undefined 2007, Molecular Mechanisms of Antibacterial Multidrug Resistance (Elsevier). Accessed: 01 Aug 2022 (Online). Available: https://www.sciencedirect.com/science/article/pii/S009286740700311X

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haider .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haider, A., Ikram, M., Rafiq, A. (2023). Antimicrobials; Drug Resistance. In: Green Nanomaterials as Potential Antimicrobials. Springer, Cham. https://doi.org/10.1007/978-3-031-18720-9_6

Download citation

Publish with us

Policies and ethics