Skip to main content

Introduction

  • Chapter
  • First Online:
Green Nanomaterials as Potential Antimicrobials

Abstract

Human desires and inquisitiveness often give rise to new scientific and technical developments. Nanoparticles (NPs) and nanostructures (NS) comprise an active area of research and a rapidly expanding innovative business with a diverse array of application industries. Due to its changeable physicochemical features such as melting temperature, water sorption, electrical and thermal capacitance, catalytic activity, and light absorption and emission, NPs and NS have risen to prominence in technological advancements, resulting in greater efficiency than their bulk substance. In contrast to their bulk counterparts, the nanoscale properties of matter vary considerably by modifying the sizes and topologies of nanomaterials (NMs), as well as their other distinctive properties. The surface charge of nanoparticles governs various aspects of NMs, including the selective adsorption of nanoparticles. As surface charge is a main predictor of colloidal activity, it modulates the organism's reaction to nanoparticle exposure by modifying the nanoparticles’ shape and size through aggregation or agglomeration formation. Agglomerated carbon nanotubes have more adverse effects than well-dispersed carbon nanotubes and aggravate lung interstitial fibrosis. The morphology or shape of NMs differs based on their mode of synthesis. The key morphological properties are planarity, sphericity, and aspect ratio. Small aspect ratio morphologies are often round, oval, cubic, prismatic, spiral, or columnar. Morphologies with a high aspect ratio resemble zigzags, helixes, and belts. Carbon-based, organic, inorganic, bimetallic, composite, metallic, metallic oxides, silica-based, ceramic, and polymeric nanoparticles make up the bulk of current NMs. Bottom-up and top-down processes, including precipitation, reduction, green synthesis, spinning, biological synthesis, molecular self-assembly, and vapor-phase deposition, may be used to manufacture NMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Hulla, S. Sahu, A. Hayes, Nanotechnology. Hum. Exp. Toxicol. 34(12), 1318–1321 (2015). https://doi.org/10.1177/0960327115603588

    Article  CAS  Google Scholar 

  2. F.J. Heiligtag, M. Niederberger, The fascinating world of nanoparticle research. Mater. Today 16(7–8), 262–271 (2013). https://doi.org/10.1016/J.MATTOD.2013.07.004

    Article  CAS  Google Scholar 

  3. P. Walter et al., Early use of PbS nanotechnology for an ancient hair dyeing formula. Nano Lett. 6(10), 2215–2219 (2006). https://doi.org/10.1021/NL061493U/ASSET/IMAGES/MEDIUM/NL061493UN00001.GIF

    Article  CAS  Google Scholar 

  4. J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018). https://doi.org/10.3762/bjnano.9.98

    Article  Google Scholar 

  5. I. Freestone, N. Meeks, M. Sax, C. Higgitt, The Lycurgus Cup—A Roman nanotechnology. Gold Bull. 40(4), 270–277 (2007). https://doi.org/10.1007/BF03215599

    Article  CAS  Google Scholar 

  6. A. Santamaria, Historical Overview of Nanotechnology and Nanotoxicology (Humana Press, Totowa, NJ, 2012), pp. 1–12. https://doi.org/10.1007/978-1-62703-002-1_1

  7. P. N. Sudha, K. Sangeetha, K. Vijayalakshmi, A. Barhoum, Nanomaterials history, classification, unique properties, production and market, in Emerging Applications of Nanoparticles and Architecture Nanostructures (Elsevier, 2018), pp. 341–384. https://doi.org/10.1016/B978-0-323-51254-1.00012-9

  8. G. Lövestam et al., Considerations on a definition of nanomaterial for regulatory purposes (2010). https://doi.org/10.2788/98686

  9. SCENIHR, Opinion on the scientific basis for the...—Google Scholar. https://scholar.google.com.pk/scholar?hl=en&as_sdt=0%2C5&q=SCENIHR.+Opinion+on+the+scientific+basis+for+the+definition+of+the+term+nanomaterial.+Scientific+Committee+on+Emerging+and+Newly+Identified+Health+Risks+%28SCENIHR%29%2C+2010.&btnG=. Accessed 21 May 2022

  10. Nanoscale Assembly Functioning Device... https://pages.charlotte.edu/poler-research/wp-content/uploads/sites/2/2011/05/Science-Cafe-JCP-2-10-11.pdf. Accessed 21 May 2022

  11. P. UNION, Regulation (EC) No 1223/2009 of the european parliament and of the council. Official J. European Union L, 342, p. 59 (2009). https://www.cirs-ck.com/Uploads/file/20171207/1512632679_83244.pdf

  12. ISO—ISO/TS 27687:2008—Nanotechnologies—Terminology and definitions for nano-objects—Nanoparticle, nanofibre and nanoplate. https://www.iso.org/standard/44278.html. Accessed 21 May 2022

  13. SCCP, Opinion on safety of nanomaterials in cosmetic...—Google Scholar. https://scholar.google.com.pk/scholar?hl=en&as_sdt=0%2C5&q=SCCP%2C+Opinion+on+safety+of+nanomaterials+in+cosmetic+products%2C+Scientific+Committee+on+Consumer+Products%2C+2007.&btnG=. Accessed 21 May 2022

  14. T.-F. Hung, R.-S. Liu, an introduction of controlled sizes and shapes of nanostructured materials and their applications (2013). https://doi.org/10.4032/9789814364515

  15. E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35(7), 583–592 (2006). https://doi.org/10.1039/B502142C

    Article  CAS  Google Scholar 

  16. R.J. Varghese, O.S. Oluwafemi, The photoluminescence and biocompatibility of CuInS2-based ternary quantum dots and their biological applications. Chemosens. 8(4), 101 (2020). https://doi.org/10.3390/CHEMOSENSORS8040101

  17. R. Tomar, A.A. Abdala, R.G. Chaudhary, N.B. Singh, Photocatalytic degradation of dyes by nanomaterials. Mater. Today Proc. 29, 967–973 (2020). https://doi.org/10.1016/J.MATPR.2020.04.144

    Article  CAS  Google Scholar 

  18. K.W. Powers, M. Palazuelos, B.M. Moudgil, S.M. Roberts, Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. 1(1), 42–51 (2009). https://doi.org/10.1080/17435390701314902

  19. W.H. De Jong, W.I. Hagens, P. Krystek, M.C. Burger, A.J.A.M. Sips, R.E. Geertsma, Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12), 1912–1919 (2008). https://doi.org/10.1016/J.BIOMATERIALS.2007.12.037

    Article  Google Scholar 

  20. H.M. Braakhuis, V. Park, I. Gosens, W.H. De Jong, F.R. Cassee, Physicochemical characteristics of nanomaterials that affect pulmonary inflammation (2014). https://doi.org/10.1186/1743-8977-11-18

  21. B. Zou, C.Z. Huang, H.L. Liu, S.L. Wang, A study on the microstructure of nano-scale ceramic tool materials. Mater. Sci. Forum 471–472, 260–263 (2004). https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.471-472.260

    Article  Google Scholar 

  22. F. Zhao, N. Takeda, Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites. Part I: experiment results. Elsevier (2000). Accessed 21 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359835X00000853

  23. A. Kessler, A. Bledzki, Correlation between interphase-relevant tests and the impact-damage resistance of glass/epoxy laminates with different fibre surface treatments. Compos. Sci. Technol. 60(1), 125–130 (2000). https://doi.org/10.1016/S0266-3538(99)00105-0

    Article  CAS  Google Scholar 

  24. S. Debnath, R. Ranade, S. Wunder, Debnath, S., R. Ranade, S. L. Wunder, J. McCool, K. Boberick, and G. Baran, Interface effects on mechanical properties of particle-reinforced composites. Elsevier (2004). Accessed 21 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0109564104000247

  25. B. Zhang, G. Bi, P. Wang, J. Bai, Y. Chew, M.S. Nai, Microstructure and mechanical properties of Inconel 625/nano-TiB2 composite fabricated by LAAM. Mater. Des. 111, 70–79 (2016). https://doi.org/10.1016/J.MATDES.2016.08.078

    Article  CAS  Google Scholar 

  26. NOPR: Mechanical and wear properties of hybrid epoxy nanocomposites. http://nopr.niscair.res.in/handle/123456789/32171. Accessed 21 May 2022

  27. C. Ispas, D. Andreescu, A. Patel, D.V. Goia, S. Andreescu, K.N. Wallace, Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ. Sci. Technol. 43(16), 6349–6356 (2009). https://doi.org/10.1021/ES9010543/SUPPL_FILE/ES9010543_SI_001.PDF

    Article  CAS  Google Scholar 

  28. B.D. Chithrani, A.A. Ghazani, W.C.W. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6(4), 662–668 (2006). https://doi.org/10.1021/NL052396O/SUPPL_FILE/NL052396OSI20060224_104311.PDF

    Article  CAS  Google Scholar 

  29. R.F. Hamilton, N. Wu, D. Porter, M. Buford, M. Wolfarth, A. Holian, Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part. Fibre Toxicol. 6(1), 1–11 (2009). https://doi.org/10.1186/1743-8977-6-35/FIGURES/6

    Article  Google Scholar 

  30. E.J. Petersen, B.C. Nelson, Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal. Bioanal. Chem. 398(2), 613–650 (2010). https://doi.org/10.1007/S00216-010-3881-7

  31. A. Verma, F. Stellacci, Effect of surface properties on nanoparticle-cell interactions. Small 6(1), 12–21 (2010). https://doi.org/10.1002/SMLL.200901158

    Article  CAS  Google Scholar 

  32. J. Champion, S. Mitragotri, Role of target geometry in phagocytosis, in Proceedings of the National Academy of Sciences (2006). Accessed 21 May 2022. [Online]. Available: https://www.pnas.org/content/103/13/4930.short

  33. M.K. Lee, S.J. Lim, C.K. Kim, Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 28(12), 2137–2146 (2007). https://doi.org/10.1016/J.BIOMATERIALS.2007.01.014

    Article  CAS  Google Scholar 

  34. A.G. Mark, J.G. Gibbs, T.C. Lee, P. Fischer, Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12(9), 802–807 (2013). https://doi.org/10.1038/nmat3685

  35. K. Donaldson et al., The biologically effective dose in inhalation nanotoxicology. Acc. Chem. Res. 46(3), 723–732 (2013). https://doi.org/10.1021/AR300092Y

    Article  CAS  Google Scholar 

  36. O. Ozay, A. Akcali, M.T. Otkun, C. Silan, N. Aktas, N. Sahiner, P(4-VP) based nanoparticles and composites with dual action as antimicrobial materials. Colloids Surf. B Biointerfaces 79(2), 460–466 (2010). https://doi.org/10.1016/J.COLSURFB.2010.05.013

    Article  CAS  Google Scholar 

  37. Assessing the risks of manufactured nanomaterials (2006). Accessed 21 May 2022. [Online]. Available: https://pubs.acs.org/sharingguidelines

  38. A. Hoshino et al., Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4(11), 2163–2169 (2004). https://doi.org/10.1021/NL048715D/SUPPL_FILE/NL048715DSI20041005_104520.PDF

    Article  CAS  Google Scholar 

  39. A. Pietroiusti et al., Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano 5(6), 4624–4633 (2011). https://doi.org/10.1021/NN200372G/SUPPL_FILE/NN200372G_SI_009.AVI

    Article  CAS  Google Scholar 

  40. J.V. Georgieva et al., Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro. Mol. Ther. 19(2), 318–325 (2011). https://doi.org/10.1038/MT.2010.236

    Article  CAS  Google Scholar 

  41. C.M. Goodman, C.D. McCusker, T. Yilmaz, V.M. Rotello, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 15(4), 897–900 (2004). https://doi.org/10.1021/BC049951I

    Article  CAS  Google Scholar 

  42. R.J. Griffitt, J. Luo, J. Gao, J.C. Bonzongo, D.S. Barber, Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 27(9), 1972–1978 (2008). https://doi.org/10.1897/08-002.1

    Article  CAS  Google Scholar 

  43. J.R. Gurr, A.S.S. Wang, C.H. Chen, K.Y. Jan, Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1–2), 66–73 (2005). https://doi.org/10.1016/J.TOX.2005.05.007

    Article  CAS  Google Scholar 

  44. H. Zhang, B. Gilbert, F. Huang, J.F. Banfield, Water-driven structure transformation in nanoparticles at room temperature. Nature 424(6952), 1025–1029 (2003). https://doi.org/10.1038/nature01845

  45. P. Wick et al., The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168(2), 121–131 (2007). https://doi.org/10.1016/J.TOXLET.2006.08.019

    Article  CAS  Google Scholar 

  46. Krishnan, A review on graphene-based nanocomposites...—Google Scholar. https://scholar.google.com.pk/scholar?q=related:4B_dasJp1gsJ:scholar.google.com/&scioq=S.+K.+Krishnan,+E.+Singh,+P.+Singh,+M.+Meyyappan+and+H.+S.+Nalwa,+RSC+Adv.,+2019,+9,+8778–8881.&hl=en&as_sdt=0,5. Accessed 21 May 2022

  47. H. Yin, H.P. Too, G.M. Chow, The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26(29), 5818–5826 (2005). https://doi.org/10.1016/J.BIOMATERIALS.2005.02.036

    Article  CAS  Google Scholar 

  48. A.K. Gupta, M. Gupta, Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13), 1565–1573 (2005). https://doi.org/10.1016/J.BIOMATERIALS.2004.05.022

    Article  CAS  Google Scholar 

  49. R. Siegel, E. Hu, Nanostructure science and technology: R & D status and trends in nanoparticles, nanostructured materials and nanodevices (1999). Accessed 21 May 2022. [Online]. Available: https://books.google.com.pk/books?hl=en&lr=&id=dFUxtEowsRoC&oi=fnd&pg=PR7&dq=Nanostructure+Science+and+Technology:+R%26D+Status+and+Trends+in+Nanoparticles,+Nanostructured+Materials+and+Nanodevices&ots=fyaylGmZUo&sig=leJBr9uA8LhVUyxFlhD0vLNkSoA

  50. Nanotechnology: Trends and Future Applications—Google Books. https://books.google.com.pk/books?hl=en&lr=&id=iPYvEAAAQBAJ&oi=fnd&pg=PP5&dq=Nanotechnology+Trends+and+Future+Applications&ots=st8GYfeIrH&sig=s7tmzN5bHUP19MGnzH1u84bqS5g#v=onepage&q=NanotechnologyTrends and Future Applications&f=false. Accessed 21 May 2022

  51. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G.J.N.M. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater nature.com 9 (2010). https://doi.org/10.1038/nmat2749

  52. P. Sabatier, Top-down and bottom-up approaches to implementation research: a critical analysis and suggested synthesis. J. Public Policy cambridge.org (1986). Accessed 22 May 2022. [Online]. Available: https://www.cambridge.org/core/journals/journal-of-public-policy/article/topdown-and-bottomup-approaches-to-implementation-research-a-critical-analysis-and-suggested-synthesis/2100355E461CC28D75C42AF64A4083D9

  53. K.T. Pankaj, T. Shruti, V. Charul, R. Aanchal, Estimation of toxic effects of chemically and biologically synthesized silver nanoparticles on human gut microflora containing Bacillus subtilis. academicjournals.org 5(9), 172–177 (2013). https://doi.org/10.5897/JTEHS2013.0271

  54. O.I. Sekunowo, S.I. Durowaye, An overview of nano-particles effect on mechanical properties of composites effects of cure temperature on the mechanical properties of coconut shell and snail shell particles reinforced polyester matrix composites view project physical and mechanical characterisation of asbestos-free particulate ceramic matrix composites view project. Accessed 22 May 2022. [Online]. Available: https://www.researchgate.net/publication/303125531

  55. C. Buzea, I.I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2(4), MR17–MR71 (2007). https://doi.org/10.1116/1.2815690

  56. M. Tahir, M. Rafique, M. Sagir, Nanotechnology: trends and future applications (2021). Accessed 22 May 2022. [Online]. Available: https://books.google.com.pk/books?hl=en&lr=&id=iPYvEAAAQBAJ&oi=fnd&pg=PP5&dq=Nanotechnology+Trends+and+Future+Application&ots=st8GZagIoN&sig=1RJJLBnH1C7owzdP78SZ91w7Pow

  57. T. Saleh, Nanomaterials: Classification, properties, and environmental toxicities. Environ Technol Innov Elsevier. Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352186420313675

  58. Y. Xia et al., One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003). https://doi.org/10.1002/ADMA.200390087

    Article  CAS  Google Scholar 

  59. Z. Rafiei-Sarmazdeh, S.M. Zahedi-Dizaji, A.K. Kang, Two-dimensional nanomaterials, in Nanostructures books.google.com (2019). Accessed 22 May 2022. [Online]. Available: https://books.google.com.pk/books?hl=en&lr=&id=HkP8DwAAQBAJ&oi=fnd&pg=PA21&dq=+Rafiei-Sarmazdeh,+Z.,+Zahedi-Dizaji,+S.M.,+Kang,+A.K.:+Two-dimensional+nanomaterials.+In:+Nanostructures.+IntechOpen+(2019)&ots=ATZBMJP3Fa&sig=iMqN9hRJaRkxfO2lzh5kMDaZUsc

  60. H. Zhang, Ultrathin two-dimensional nanomaterials. ACS nano ACS Publ. (2015) Accessed 22 May 2022. [Online]. Available: https://pubs.acs.org/doi/abs/https://doi.org/10.1021/acsnano.5b05040

  61. S. Ahmed, W. Ali, Green nanomaterials: processing, properties, and applications (2020). Accessed 22 May 2022. [Online]. Available: https://books.google.com.pk/books?hl=en&lr=&id=iSfXDwAAQBAJ&oi=fnd&pg=PR5&dq=Green++Nanomaterials+Processing,+Properties,+and+Applications&ots=a_TZWBgfkH&sig=GDl3R3R8oe2lE8k6f_4iAq-Ws4I

  62. T.A. Saleh, Nanomaterials: classification, properties, and environmental toxicities. Environ. Technol. Innov. 20, 101067 (2020). https://doi.org/10.1016/J.ETI.2020.101067

    Article  CAS  Google Scholar 

  63. N. Kumar, S. Kumbhat, Carbon-Based Nanomaterials....—Google Scholar. https://scholar.google.com.pk/scholar?hl=en&as_sdt=0%2C5&q=Kumar%2C+N.%3B+Kumbhat%2C+S.+Carbon-Based+Nanomaterials.+Essentials+in+Nanoscience+and+Nanotechnology%3B+John+Wiley+%26+Sons%2C+Inc.%3A+Hoboken%2C+NJ%2C+U.S.A.%2C+2016%3B+pp+189–236.&btnG=. Accessed 22 May 2022

  64. Z. Li, L. Wang, Y. Li, Y. Feng, W. Feng, Carbon-based functional nanomaterials: Preparation, properties and applications. Compos. Sci. Technol. Elsevier (2019). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0266353819307559

  65. M. Nehra, N. Dilbaghi, A. Hassan, S. Kumar, Carbon-based nanomaterials for the development of sensitive nanosensor platforms, in Advances in Nanosensors for Biological and Environmental Analysis Elsevier (2019). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128174562000012

  66. F. Xie, M. Yang, M. Jiang, X.J. Huang, W.Q. Liu, P.H. Xie, Carbon-based nanomaterials–a promising electrochemical sensor toward persistent toxic substance. Elsevier (2019). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0165993619303152

  67. N. Sumi, K.C. Chitra, Fullerene C60 nanomaterial induced oxidative imbalance in gonads of the freshwater fish, Anabas testudineus (Bloch, 1792). Aquat. Toxicol. Elsevier (2019). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0166445X1930092X

  68. S. Battaglia et al., A novel intermolecular potential to describe the interaction between the azide anion and carbon nanotubes. Elsevier. https://doi.org/10.1016/j.diamond.2019.107533ĂŻ

  69. A.A. Silva, R.A. Pinheiro, A.C. Rodrigues, M.R. Baldan, V.J. Trava-Airoldi, E.J. Corat, Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor. Elsevier (2018). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169433218302320

  70. Q. Yan, M. Gozin, F. Zhao, A. Cohen, S.P. Pang, Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale pubs.rsc.org (2016). Accessed 22 May 2022. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2016/nr/c5nr07855e

  71. Nanotechnology Trends and Future Application—Google Scholar. https://scholar.google.com.pk/scholar?hl=en&as_sdt=0%2C5&q=Nanotechnology+Trends+and+Future+Application&btnG=. Accessed 22 May 2022

  72. X. Gao, L. Yang, J.A. Petros, F.F. Marshall, J.W. Simons, S. Nie, In vivo molecular and cellular imaging with quantum dots. Elsevier. https://doi.org/10.1016/j.copbio.2004.11.003

  73. R. Bailey, A. Smith, S. Nie, Quantum dots in biology and medicine. Physica E: Low-dimensional Systems Nanostructures Elsevier (2004). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1386947704003443

  74. J. Kreuter, Colloidal drug delivery systems (1994). Accessed 22 May 2022. [Online]. Available: https://books.google.com.pk/books?hl=en&lr=&id=aH_6WI0OHWoC&oi=fnd&pg=PA1&dq=%5D+J.+Kreuter,+Nanoparticles,+in:+J.+Kreuter+(Ed.),+Colloidal+Drug+Delivery+Systems,+Marcel+Dekker+Inc,+New+York,+NY,+United+States,+1994.&ots=6zrTLOrnF0&sig=5Mqduo6kuMruW1DzKBFiWF4QtYQ

  75. K. Hadinoto, A. Sundaresan, W.S. Cheow, Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Elsevier (2013). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0939641113002464

  76. S. Lal, B. Bhimrao, R. Kumar, Synthesis of organic nanoparticles and their applications in drug delivery and food nanotechnology: a review. J Nanomater Mol Nanotechnol 3: 4. researchgate.net 3, 4 (2014). https://doi.org/10.4172/2324-8777.1000150

  77. A.Y. Utekhina, G.B. Sergeev, Organic nanoparticles. Russ. Chem. Rev. 80(3), 219–233 (2011). https://doi.org/10.1070/RC2011V080N03ABEH004146/META

    Article  CAS  Google Scholar 

  78. S. Naahidi, M. Jafari, F. Edalat, K. Raymond, A. Khademhosseini, P. Chen, Biocompatibility of engineered nanoparticles for drug delivery. J. Controlled Release Elsevier, Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168365912008553

  79. Y. Wang, L. Huang, Composite nanoparticles for gene delivery. Adv. Genet. Elsevier (2014). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128001486000055

  80. Q. Zhang et al., A C-coated and Sb-doped SnO2 nanocompsite with high surface area and low charge transfer resistance as ultrahigh capacity lithium ion battery anode. Elsevier. Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2468606919300887

  81. A. Biswas, I. Bayer, A. Biris, T. Wang, E. Dervishi, F. Faupel, Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv. Colloid Interface Sci. Elsevier (2012). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0001868611001904

  82. R. Abozaid, Z. Lazarević, I. Radović, M. Gilić, D. Šević, M.S. Rabasović, V. Radojević, Optical properties and fluorescence of quantum dots CdSe/ZnS-PMMA composite films with interface modifications. Optical Mater. Elsevier (2019). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925346719303131

  83. A. Abdulhameed, A.T. Mohammad, A.H. Jawad, Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. J. Cleaner Prod. Elsevier (2019). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S095965261931827X

  84. F. Asghari, Z. Jahanshiri, M. Imani, M. Shams-Ghahfarokhi, M. Razzaghi-Abyaneh, Antifungal nanomaterials: synthesis, properties, and applications, in Nanobiomaterials in Antimicrobial Therapy (Elsevier, 2016). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780323428644000105

  85. B. Shiau, C. Lin, Y. Liao, Y. Lee, S.H. Liu, W.C. Ding, J.R. Lee, The characteristics and mechanisms of Au nanoparticles processed by functional centrifugal procedures. J. Phys. Chem. Solids Elsevier (2018). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022369717316384

  86. C. Kim, H. Lee, Light-assisted surface reactions on metal nanoparticles. Catal. Sci. Technol. pubs.rsc.org. Accessed 22 May 2022. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2018/cy/c8cy00674a

  87. T. Saleh, G. Fadillah, Recent trends in the design of chemical sensors based on graphene–metal oxide nanocomposites for the analysis of toxic species and biomolecules. TrAC Trends Anal. Chem. Elsevier (2019). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S016599361930411X

  88. L. Das, P. Das, A. Bhowal, C. Bhattachariee, Synthesis of hybrid hydrogel nano-polymer composite using Graphene oxide, Chitosan and PVA and its application in waste water treatment. Environ. Technol. Innov. Elsevier (2020). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S235218641930834X

  89. Y. Qi et al., Controllable synthesis of transition metal ion-doped CeO2 micro/nanostructures for improving photocatalytic performance. Elsevier. Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925838818346589

  90. Z. Liu, L. Yao, X. Pan, Q. Liu, H. Huang, A green and facile approach to the efficient surface modification of alumina nanoparticles with fatty acids. Appl. Surf. Sci. Elsevier (2018). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169433218309899

  91. P. Chu et al., On the volume resistivity of silica nanoparticle filled epoxy with different surface modifications. Elsevier. Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359835X17301392

  92. P. Gaur, S. Banerjee, CN cross coupling: Novel approach towards effective aryl secondary amines modification on nanodiamond surface. Diamond Relat. Mater. Elsevier (2019). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925963519301761

  93. T. Zeng et al., Facile fabrication of durable superhydrophobic and oleophobic surface on cellulose substrate via thiol-ene click modification. Elsevier. Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169433219320768

  94. J. Hur, J. Han, J. Shin, H. Park, S.C. Choi, Y.G. Jung, G.S. An, Fabrication of SnO2-decorated Fe3O4 nanoparticles with anionic surface modification. Ceram. Int. Elsevier (2019). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0272884219319479

  95. R. Saha, D. Arunprasath, G. Sekar, Surface enriched palladium on palladium-copper bimetallic nanoparticles as catalyst for polycyclic triazoles synthesis. J. Catal. Elsevier (2019). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0021951719303860

  96. H. Su et al., Luminescence of perovskite light-emitting diodes with quasi-core/shell structure enhanced by Al–TiO2–Ag Bimetallic Nanoparticle. Elsevier. Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0749603619313047

  97. Y. Oh, J. Lee, M. Lee, Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films. Appl. Surf. Sci. Elsevier (2018). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169433217335389

  98. S. Kumar, M. Malik, R. Purohit, Synthesis of high surface area mesoporous silica materials using soft templating approach. Mater. Today: Proc. Elsevier (2018). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785317329462

  99. S. Barua, S. Gogoi, R. Khan, N. Karak, Silicon-based nanomaterials and their polymer nanocomposites, in Nanomaterials and Polymer Nanocomposites. Elsevier. Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128146156000084

  100. H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Materialia Elsevier (2000). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359645499002852

  101. V. Pokropivny, V. Skorokhod, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng.: C Elsevier (2007). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0928493106003353

  102. P. Sobierajska, A. Dorotkiewicz-Jach, K. Zawisza, J. Okal, T. Olszak, Z. Drulis-Kawa, R.J. Wiglusz, Preparation and antimicrobial activity of the porous hydroxyapatite nanoceramics. J. Alloys Compd. Elsevier (2018). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925838818310302

  103. X. Xu, Y. Yang, X. Wang, X. Su, J. Liu, Low-temperature preparation of Al2O3-ZrO2 nanoceramics via pressureless sintering assisted by amorphous powders. J. Alloys Compd. Elsevier (2019). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925838818349430

  104. X. Yang et al., Selective uptake of chitosan polymeric micelles by circulating monocytes for enhanced tumor targeting. Elsevier. Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0144861719311026

  105. S. Sur, A. Rathore, V. Dave, K.R. Reddy, R.S. Chouhan, V. Sadhu, Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct. Nano-Objects Elsevier (2019). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352507X19303191

  106. A. Gharieh, S. Khoee, A.R. Mahdavian, Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Adv. Colloid Interface Sci. Elsevier (2019). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0001868618302094

  107. T. Matsuyama, H. Hayashi, S. Komatsu, T.A. Asoh, A. Kikuchi, Preparation of thermoresponsive nanoparticles exhibiting biomolecule recognition ability via atom transfer radical dispersion polymerization. Colloids Surf B: Biointerfaces Elsevier (2019). Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0927776519305041

  108. B. Okrugin, I. Neelov, F. Leermakers, O. Borisov, Structure of asymmetrical peptide dendrimers: insights given by self-consistent field theory. Polymer Elsevier. Accessed 22 May 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0032386117307280

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haider .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haider, A., Ikram, M., Rafiq, A. (2023). Introduction. In: Green Nanomaterials as Potential Antimicrobials. Springer, Cham. https://doi.org/10.1007/978-3-031-18720-9_1

Download citation

Publish with us

Policies and ethics