Skip to main content

Using an Explainable Machine Learning Approach to Minimize Opportunistic Maintenance Interventions

  • Conference paper
  • First Online:
Highlights in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS Collection (PAAMS 2022)

Abstract

The industry 4.0 paradigm, with a wide range of sensors, IoT and big data technologies, has facilitated the assessment of faults in complex mechanical systems. In this paper, a fault diagnosis strategy is presented for opportunistic condition-based maintenance decisions of a single failure mode. Focusing on the challenges of the fault identification task, the proposed method was assessed by conducting a case-study using real-world data. To detect symptoms of screen pack degradation in the company’s coextrusion process, the devised strategy was based on an anomaly approach and a technique for explainable artificial intelligence (XAI). Experimental results for two consecutive production runs of an extruder show that the proposed method effectively identifies clustered anomalies as symptoms of a clogged screen pack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jardine, A.K.S., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal. Process. 20, 1483–1510 (2006)

    Article  Google Scholar 

  2. Fitch, E.C.: 10 – The proactive approach. In: Fitch, E.C. (ed.) Proactive Maintenance for Mechanical Systems, pp. 287–317. Elsevier, Oxford (1992)

    Chapter  Google Scholar 

  3. Nicolai, R.P., Dekker, R.: Optimal maintenance of multi-component systems: a review. In: Kobbacy, K.A.H., Murthy, D.N.P. (eds.) Complex System Maintenance Handbook, pp. 263–286. Springer London, London (2008)

    Chapter  Google Scholar 

  4. Scarf, P.A., Deara, M.: Block replacement policies for a two-component system with failure dependence. Naval Res. Logist. 50, 70–87 (2003)

    Article  MathSciNet  Google Scholar 

  5. Ab-Samat, H., Kamaruddin, S.: Opportunistic maintenance (OM) as a new advancement in maintenance approaches: a review. J. Qual. Maintenance Eng. 2, 98–121 (2014)

    Article  Google Scholar 

  6. Liang, T.Y.: Optimum piggyback preventive maintenance policies. IEEE Trans. Reliab. 34, 529–538 (1985)

    Article  Google Scholar 

  7. Levrat, E., Iung, B., Crespo Marquez, A.: E-maintenance: review and conceptual framework. Prod. Plan. Control 19, 408–429 (2008)

    Article  Google Scholar 

  8. Baur, M., Albertelli, P., Monno, M.: A review of prognostics and health management of machine tools. Int. J. Adv. Manuf. Technol. 107(5–6), 2843–2863 (2020). https://doi.org/10.1007/s00170-020-05202-3

    Article  Google Scholar 

  9. Tao, F., Qi, Q., Liu, A., Kusiak, A.: Data-driven smart manufacturing. J. Manuf. Syst. 48, 157–169 (2018)

    Article  Google Scholar 

  10. Zonta, T., et al.: Predictive maintenance in the Industry 4.0: a systematic literature review. Comput. Ind. Eng. 150, 106889 (2020)

    Article  Google Scholar 

  11. Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data. John Wiley & Sons (2011)

    MATH  Google Scholar 

  12. Carrasco, J., et al.: Anomaly detection in predictive maintenance: a new evaluation framework for temporal unsupervised anomaly detection algorithms. Neurocomputing 462, 440–452 (2021)

    Article  Google Scholar 

  13. Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26, 2250–2267 (2013)

    Article  Google Scholar 

  14. Blázquez-García, A., Conde, A., Mori, U., Lozano, J.A.: A review on outlier/anomaly detection in time series data. ACM Comput. Surveys (CSUR) 54, 1–33 (2021)

    Article  Google Scholar 

  15. Baragona, R., Battaglia, F.: Outliers detection in multivariate time series by independent component analysis. Neural Comput. 19, 1962–1984 (2007)

    Article  Google Scholar 

  16. Papadimitriou, S., Sun, J., Faloutsos, C.: Streaming pattern discovery in multiple time-series (2005)

    Google Scholar 

  17. Fernandes, M., et al.: Data analysis and feature selection for predictive maintenance: a case-study in the metallurgic industry. Int. J. Inf. Manage. 46, 252–262 (2019). https://doi.org/10.1016/j.ijinfomgt.2018.10.006

    Article  Google Scholar 

  18. Fernandes, M., Corchado, J.M., Marreiros, G.: Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: a systematic literature review. Appl. Intell. (2022). https://doi.org/10.1007/s10489-022-03344-3

    Article  Google Scholar 

  19. Fernandes, M., Canito, A., Mota, D., Corchado, J.M., Marreiros, G.: Service-oriented architecture for data-driven fault detection. In: Matsui, K., Omatu, S., Yigitcanlar, T., González, S.R. (eds.) DCAI 2021. LNNS, vol. 327, pp. 179–189. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-86261-9_18

    Chapter  Google Scholar 

  20. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  21. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 3, 185–205 (2005)

    Article  Google Scholar 

  22. Gogos, C.G., Tadmor, Z.: Principles of Polymer Processing. John Wiley & Sons (2013)

    Google Scholar 

  23. Lafleur, P.G., Vergnes, B.: Polymer Extrusion. John Wiley & Sons (2014)

    Book  Google Scholar 

  24. Goldstein, M., Uchida, S.: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS ONE 11, e0152173 (2016)

    Article  Google Scholar 

  25. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. Springer (2013)

    Book  Google Scholar 

  26. Ting, K.M., Tan, S.C., Liu, F.T.: Mass: A New Ranking Measure for Anomaly Detection. Monash University, Gippsland School of Information Technology (2009)

    Google Scholar 

  27. Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  28. Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6, 1–39 (2012)

    Article  Google Scholar 

  29. Lesouple, J., Baudoin, C., Spigai, M., Tourneret, J.-Y.: Generalized isolation forest for anomaly detection. Pattern Recogn. Lett. 149, 109–119 (2021)

    Article  Google Scholar 

  30. Puggini, L., McLoone, S.: An enhanced variable selection and Isolation Forest based methodology for anomaly detection with OES data. Eng. Appl. Artif. Intell. 67, 126–135 (2018)

    Article  Google Scholar 

  31. Ahmed, I., Jeon, G., Piccialli, F.: From artificial intelligence to eXplainable artificial intelligence in Industry 4.0: a survey on what, how, and where. IEEE Trans. Ind. Inform. 8, 5031–5042 (2022)

    Article  Google Scholar 

  32. Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable AI: A Review of Machine Learning Interpretability Methods (2020). https://doi.org/10.3390/e23010018

    Article  Google Scholar 

  33. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  34. Janzing, D., Minorics, L., Blöbaum, P.: Feature relevance quantification in explainable AI: a causal problem. In: International Conference on Artificial Intelligence and Statistics, pp. 2907–2916. PMLR (2020)

    Google Scholar 

  35. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature Extraction: Foundations and Applications. Springer (2008)

    MATH  Google Scholar 

  36. Cantor, K.: Blown Film Extrusion. Carl Hanser Verlag GmbH Co. KG (2018)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lourenço, A., Fernandes, M., Canito, A., Almeida, A., Marreiros, G. (2022). Using an Explainable Machine Learning Approach to Minimize Opportunistic Maintenance Interventions. In: González-Briones, A., et al. Highlights in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS Collection. PAAMS 2022. Communications in Computer and Information Science, vol 1678. Springer, Cham. https://doi.org/10.1007/978-3-031-18697-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18697-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18696-7

  • Online ISBN: 978-3-031-18697-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics