Skip to main content

Multi-Tier Reputation for Data Cooperatives

  • Conference paper
  • First Online:
Mathematical Research for Blockchain Economy (MARBLE 2022)

Abstract

Data cooperatives allow their members—the data owners—to pool their digital assets together for processing and access management. In this context, reputation is an important measure of trust, which can effectively complement financial assets in the decentralized scenario, also providing incentives for users’ honest behavior. We present a decentralized data cooperative system based on the Proof-of-Reputation and Proof-of-Stake blockchains. In order to provide inclusivity for low-reputation (newly joined) users, which is required in our community-based scenario, we use the tier-based committee selection introduced by Kleinrock et al. at Indocrypt 2020. As the underlying Proof-of-Stake system, we use Snow White due to its convenient properties such as flexible committee selection and user participation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    DID refers to an individual owning personal digital data relating to multiple elements of one’s identity.

  2. 2.

    We would like to refer an unfamiliar reader to these detailed surveys [15, 19] on blockchain systems.

  3. 3.

    That is an assumption that over a 2/3 fraction of the overall reputation is held by honest parties.

  4. 4.

    https://www.midata.coop/en/home/.

  5. 5.

    https://www.hubofallthings.com/main/what-is-the-hat.

References

  1. World Economic Forum. (2014). “Rethinking Personal Data: A New Lens for Strengthening Trust.” http://reports.weforum.org/rethinking-personal-data.

  2. Kearney, A. T. (2014). Rethinking personal data: A new lens for strengthening trust. In World Economic Forum. Retrieved November (Vol. 1).

    Google Scholar 

  3. Pentland, A. (2020). Building the new economy: What we need and how to get there. In Building the New Economy.

    Google Scholar 

  4. Hardjono, T., & Pentland, A. (2019). Data cooperatives: Towards a foundation for decentralized personal data management. arXiv preprint arXiv:1905.08819.

  5. Ada Lovelace Institute. (2021). Data cooperatives. In Chapter two from Exploring legal mechanisms for data stewardship–a joint publication with the AI Council. Available at https://www.adalovelaceinstitute.org/feature/data-cooperatives/.

  6. Data Co-Ops Workshop. (2019). Executive summary of a December 22, 2019 workshop hosted at the hebrew university of Jerusalem. The Federmann Cyber Security Research Center. Available at https://csrcl.huji.ac.il/sites/default/files/csrcl/files/data_co-ops_summary.pdf.

  7. Zyskind, G., Nathan, O., & Pentland, A. (2015). Decentralizing privacy: Using blockchain to protect personal data. IEEE Security and Privacy Workshops, 2015, 180–184.

    Google Scholar 

  8. Salau, A., Dantu, R., Morozov, K., Upadhyay, K., & Badruddoja, S. (2022). Towards a threat model and security analysis for data cooperatives. In Proceedings of the 19th International Conference on Security and Cryptography. ISBN 978-989-758-590-6, ISSN 2184-7711, pp. 707–713.

    Google Scholar 

  9. Schaub, A., Bazin, R., Hasan, O., & Brunie, L. (2016). A trustless privacy-preserving reputation system. In IFIP International Conference on ICT Systems Security and Privacy Protection (pp. 398–411). Springer.

    Google Scholar 

  10. Gao, S., Yu, T., Zhu, J., & Cai, W. (2019). T-PBFT: An EigenTrust-based practical Byzantine fault tolerance consensus algorithm. China Communications, 16, 111–123.

    Article  Google Scholar 

  11. Salau, A., Dantu, R., & Upadhyay, K. (2021). Data Cooperatives for Neighborhood Watch. IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2021, 1–9.

    Google Scholar 

  12. Gupta, D. (2022). Decentralized identity using blockchain. Available online at https://venturebeat.com/2022/03/05/decentralized-identity-using-blockchain/.

  13. Heister, S., & Yuthas, K. (2021). How blockchain and AI enable personal data privacy and support cybersecurity. In T. M. Fernández-Caramés & P. Fraga-Lamas (Eds.), Advances in the Convergence of Blockchain and Artificial Intelligence. IntechOpen.

    Google Scholar 

  14. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, 21260.

    Google Scholar 

  15. Ferdous, M. S., Chowdhury, M. J. M., Hoque, M. A., & Colman, A. (2020). Blockchain consensus algorithms: A survey. arXiv preprint arXiv:2001.07091.

  16. Magyar, G. (2017). Blockchain: Solving the privacy and research availability tradeoff for EHR data: A new disruptive technology in health data management. In 2017 IEEE 30th Neumann Colloquium (NC) (pp. 000135–000140).

    Google Scholar 

  17. Kleinrock, L., Ostrovsky, R., & Zikas, V. (2020). Proof-of-reputation blockchain with nakamoto fallback. In International Conference on Cryptology in India (pp. 16–38). Springer. Full version: Cryptology ePrint Archive, Paper 2020/381. https://eprint.iacr.org/2020/381.pdf.

  18. Daian, P., Pass, R., & Shi, E. (2019). Snow white: Robustly reconfigurable consensus and applications to provably secure proof of stake. In International Conference on Financial Cryptography and Data Security (pp. 23–41), Springer. Full version: Cryptology ePrint Archive, Paper 2016/919. https://eprint.iacr.org/2016/919.pdf.

  19. Wang, W., Hoang, D. T., Hu, P., Xiong, Z., Niyato, D., Wang, P., & Kim, D. I. (2019). A survey on consensus mechanisms and mining strategy management in blockchain networks. IEEE Access, 7, 22328–22370.

    Article  Google Scholar 

  20. Zyskind, G., Nathan, O., & Pentland, A. (2015). Enigma: Decentralized computation platform with guaranteed privacy. ArXiv abs/1506.03471.

    Google Scholar 

  21. Banyan Project. (2021). Our product: Trustworthy news and information that Stir civic engagement. Accessed January 30, 2021, from https://banyanproject.coop/.

  22. The Associated Press. (2021). Our mission is to inform the world. Accessed January 30, 2021, from https://www.ap.org/en-us/.

  23. King, S., & Nadal, S. (2012). Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-published paper. 19(1).

    Google Scholar 

  24. Leonardos, S., Reijsbergen, D., & Piliouras, G. (2020). Weighted voting on the blockchain: Improving consensus in proof of stake protocols. International Journal of Network Management, 30(5), e2093.

    Article  Google Scholar 

  25. Kiayias, A., Russell, A., David, B., & Oliynykov, R. (2017). Ouroboros: A provably secure proof-of-stake blockchain protocol. In J. Katz, & H. Shacham (Eds.), Advances in Cryptology–CRYPTO 2017. CRYPTO 2017. Lecture Notes in Computer Science, vol 10401, Springer.

    Google Scholar 

  26. Han, X., Yuan, Y., & Wang, F.-Y. (2019). A fair blockchain based on proof of credit. IEEE Transactions on Computational Social Systems, 6(5), 922–931.

    Article  Google Scholar 

  27. Zou, J., Ye, B., Qu, L., Wang, Y., Orgun, M. A., & Li, L. (2018). A proof-of-trust consensus protocol for enhancing accountability in crowdsourcing services. IEEE Transactions on Services Computing, 12(3), 429–445.

    Article  Google Scholar 

  28. Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2019). Bitcoin and cryptocurrency technologies. Curso elaborado pela.

    Google Scholar 

  29. Wang, Q., Xu, M., Li, X., & Qian, H. (2020). Revisiting the fairness and randomness of delegated proof of stake consensus algorithm. In 2020 IEEE Intl Conf on Parallel and Distributed Processing with Applications, Big Data and Cloud Computing, Sustainable Computing and Communications, Social Computing and Networking (ISPA/BDCloud/SocialCom/SustainCom) (pp. 305–312). https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00064.

  30. Zhuang, Q., Liu, Y., Chen, L., & Ai, Z. (2019). Proof of reputation: A reputation-based consensus protocol for blockchain based systems. In Proceedings of the 2019 International Electronics Communication Conference (pp. 131–138).

    Google Scholar 

  31. Do, T., Nguyen, T., & Pham, H. (2019). Delegated proof of reputation: A novel blockchain consensus. In Proceedings of the 2019 International Electronics Communication Conference (pp. 90–98).

    Google Scholar 

  32. Yu, J., Kozhaya, D., Decouchant, J., & Esteves-Verissimo, P. (2019). Repucoin: Your reputation is your power. IEEE Transactions on Computers, 68(8), 1225–1237.

    Article  Google Scholar 

  33. Wang, E. K., Liang, Z., Chen, C. M., Kumari, S., & Khan, M. K. (2020). PoRX: A reputation incentive scheme for blockchain consensus of IIoT. Future Generation Computer Systems, 102, 140–151.

    Article  Google Scholar 

  34. Gai, F., Wang, B., Deng, W., & Peng, W. (2018). Proof of reputation: A reputation-based consensus protocol for peer-to-peer network. In International Conference on Database Systems for Advanced Applications (pp. 666–681). Springer.

    Google Scholar 

  35. Bou Abdo, J., El Sibai, R., & Demerjian, J. (2021). Permissionless proof-of-reputation-X: A hybrid reputation-based consensus algorithm for permissionless blockchains. Transactions on Emerging Telecommunications Technologies, 32(1), e4148.

    Article  Google Scholar 

  36. Zaccagni, Z., & Dantu, R. (2020). Proof of review (PoR): A new consensus protocol for deriving trustworthiness of reputation through reviews. IACR Cryptol. ePrint Arch., 2020, 475.

    Google Scholar 

  37. Larangeira, M. (2021). Reputation at stake! A trust layer over decentralized ledger for multiparty computation and reputation-fair lottery. Cryptology ePrint Archive.

    Google Scholar 

  38. Bugday, A., Ozsoy, A., Öztaner, S. M., & Sever, H. (2019). Creating consensus group using online learning based reputation in blockchain networks. Pervasive and Mobile Computing, 59, 101056.

    Article  Google Scholar 

  39. Biryukov, A., Feher, D., & Khovratovich, D. (2017). Guru: Universal reputation module for distributed consensus protocols. University of Luxembourg.

    Google Scholar 

  40. Biryukov, A., & Feher, D. (2020). ReCon: Sybil-resistant consensus from reputation. Pervasive and Mobile Computing, 61, 101109. Princeton University Press.

    Google Scholar 

  41. Asharov G., Lindell Y., & Zarosim H. (2013). Fair and efficient secure multiparty computation with reputation systems. In K. Sako, P. Sarkar (Eds.), Advances in Cryptology–ASIACRYPT 2013. ASIACRYPT 2013. Lecture Notes in Computer Science, vol 8270, Springer.

    Google Scholar 

  42. Kamvar, S. D., Schlosser, M. T., & Garcia-Molina, H. (2003). The eigentrust algorithm for reputation management in p2p networks. In Proceedings of the 12th International Conference on World Wide Web (pp. 640–651).

    Google Scholar 

  43. David, B., Gaži, P., Kiayias, A., & Russell, A. (2018). Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual International Conference on the Theory and Applications of Cryptographic Techniques (pp. 66–98). Springer.

    Google Scholar 

  44. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., & Zeldovich, N. (2017). Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles (pp. 51–68).

    Google Scholar 

  45. Pass, R., & Shi, E. (2017). The sleepy model of consensus. In International Conference on the Theory and Application of Cryptology and Information Security (pp. 380–409). Springer.

    Google Scholar 

  46. Dimitriou, T., Karame, G., Christou, I. T. (2008). SuperTrust—a secure and efficient framework for handling trust in super peer networks. In Distributed Computing and Networking, LNCS (vol. 4904, pp. 350–362). Springer.

    Google Scholar 

  47. Sabater, J., & Sierra, C. (2002). Reputation and social network analysis in multi-agent systems. In Proceedings of International Joint Conference on Autonomous Agents and Multiagent Systems (pp. 475–482). ACM.

    Google Scholar 

  48. Huynh, T. D., Jennings, N. R., & Shadbolt, N. R. (2006). An integrated trust and reputation model for open multi-agent systems. Autonomous Agents and Multi-Agent Systems, 13, 119–154.

    Article  Google Scholar 

  49. Michiardi, P., Molva, R. (2002). Core: A collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks. In Advanced Communications and Multimedia Security, IFIP AICT (pp. 107–121). Kluwer Academic Publishers.

    Google Scholar 

  50. Xiong, L., & Liu, L. (2004). PeerTrust: supporting reputation-based trust for peer-to-peer electronic communities, Transactions on Knowledge and Data. Engineering, 16, 843–857.

    Google Scholar 

  51. Teacy, W., Patel, J., Jennings, N., & Luck, M. (2006). Travos: trust and reputation in the context of inaccurate information sources. Autonomous Agents and Multi-agent Systems, 12, 183–198.

    Article  Google Scholar 

  52. Vavilis, S., Petković, M., & Zannone, N. (2014). A reference model for reputation systems. Decision Support Systems, 61, 147–154.

    Article  Google Scholar 

  53. Garcia-Retuerta, D., Casado-Vara, R., Valdeolmillos, D., & Corchado, J. M. (2021). A reputation score proposal for online video platforms. In G. Marreiros, F.S. Melo, N. Lau, H. Lopes Cardoso, & L. P. Reis (Eds.), Progress in Artificial Intelligence. EPIA 2021. Lecture Notes in Computer Science, vol. 12981, Springer.

    Google Scholar 

  54. Lu, K., Wang, J., Xie, L., Zhen, Q., & Li, M. (2016). An eigentrust-based hybrid trust model in P2P file sharing networks. Procedia Computer Science, 94, 366–371.

    Article  Google Scholar 

  55. Zoë, A., Robert, M., & Serge, P. (2005). A non-manipulable trust system based on EigenTrust. SIGecom Exch, 5(4), 21–30.

    Article  Google Scholar 

  56. Heba, A. K. (2015). HonestPeer. Journal of King Saud University Computer Information Science, 27(3), 315–322.

    Article  Google Scholar 

  57. McAuley, J., Targett, C., Shi, Q., & Van Den Hengel, A. (2015). Image-based recommendations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 43–52). Available at https://jmcauley.ucsd.edu/data/amazon/.

  58. eBay Reviews and Guides. (2022). https://www.kaggle.com/datasets/wojtekbonicki/ebay-reviews, last viewed on May 28, 2022.

  59. Audun, J., Elizabeth, G., & Michael, K. (2006). Simplification and analysis of transitive trust networks. Web Intelligence and Agent Systems, 4(2), 139–161.

    Google Scholar 

Download references

Acknowledgements

We thank the National Security Agency for the partial support through grants H98230-20-1-0329, H98230-20-1-0403, H98230-20-1-0414, and H98230-21-1-0262. We are grateful to Stefanos Leonardos and the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abiola Salau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salau, A., Dantu, R., Morozov, K., Upadhyay, K., Badruddoja, S. (2023). Multi-Tier Reputation for Data Cooperatives. In: Pardalos, P., Kotsireas, I., Guo, Y., Knottenbelt, W. (eds) Mathematical Research for Blockchain Economy. MARBLE 2022. Lecture Notes in Operations Research. Springer, Cham. https://doi.org/10.1007/978-3-031-18679-0_14

Download citation

Publish with us

Policies and ethics