Skip to main content

Abstract

Bacterial sepsis is a major cause of fatality worldwide and the increasing multidrug-resistant bacteria is a major concern for public health and modern health systems (Breijyeh et al., Molecules 25(6):1340, 2020). Sepsis is a multi-step process that involves an uncontrolled inflammatory response by the host cells that may result in multi organ failure and death. Both gram-negative and gram-positive bacteria play a major role in causing sepsis. Surviving Sepsis Campaign recommends urgent stabilization of the patient, volume resuscitation, vasopressors and/or inotropic therapy to restore perfusion, and the administration of broad spectrum, empirical antibiotic therapy in the setting of an intensive care unit (ICU) (Evans et al., Intensive Care Med 47(11):1181–1247, 2021). However, antibiotic-induced release of bacterial cell wall components can have immediate adverse effects for the patient (Schulze et al., Res Exp Med 200: 169–174, 2001; Lepper et al. Intensive Care Med 28: 824–833, 2002). Particularly, some classes of beta-lactam antibiotics lead to markedly increased levels of free endotoxins while treatment with carbapenems and aminoglycosides produces relatively low amounts of endotoxins. Polymyxins are effective (Trimble et al., Cold Spring Harb Perspect Med 6(10):a025288, 2016; Lepper et al., Intensive Care Med 28(7):824–33, 2002) and able to bind to endotoxin (LPS) and phospholipids in the outer cell membrane of Gram-negative bacteria. However, systemic administration of polymyxin B (PMX-B) in humans is restricted because of its nephrotoxicity and neurotoxicity. Nowadays, new techniques based on the extracorporeal circulation of blood have been developed. In this chapter, we will review the effect of extracorporeal removal of endotoxin. Particularly, PMX-B is a strong ligand for the extracorporeal selective adsorption of circulating endotoxin in blood (Tani et al., Adv Exp Med Biol 1145:321–341, 2019), largely described in literature, and for this reason it will be depicted in detail in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang Q, Li Y, Tuohuti P, Qin Z, Zhang Z, Zhao W, Su B. Advances in the development of biomaterials for endotoxin adsorption in sepsis. Front Bioeng Biotechnol. 2021;9:699418.

    Google Scholar 

  2. Marshall JC, Foster D, Vincent JL, Cook DJ, Cohen J, Dellinger RP, Opal S, Abraham E, Brett SJ, Smith T, Mehta S, Derzko A, Romaschin A, MEDIC study. Diagnostic and prognostic implications of endotoxemia in critical illness: results of the MEDIC study. J Infect Dis. 2004;190(3):527–34.

    Article  CAS  Google Scholar 

  3. Klein DJ, Foster D, Walker PM, Bagshaw SM, Mekonnen H, Antonelli M. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial. Intensive Care Med. 2018;44(12):2205–12.

    Article  CAS  Google Scholar 

  4. Harm S, Lohner K, Fichtinger U, Schildböck C, Zottl J, Hartmann J. Blood compatibility—an important but often forgotten aspect of the characterization of antimicrobial peptides for clinical application. Int J Mol Sci. 2019;20(21):5426.

    Article  CAS  Google Scholar 

  5. Ronco C, Piccinni P, Rosner MH, editors. Endotoxemia and endotoxin shock: disease, diagnosis and therapy. Contrib Nephrol. 2010;167:35–44.

    Google Scholar 

  6. Fiore B, Soncini M, Vesentini S, Penati A, Visconti G, Redaelli A. Multi-scale analysis of the toraymyxin adsorption cartridge. Part II: computational fluid-dynamic study. Int J Artif Organs. 2006;29:251–60.

    Article  CAS  Google Scholar 

  7. Nishibori M, Takahashi HK, Katayama H, et al. Specific removal of monocytes from peripheral blood of septic patients by polymyxin B-immobilized filter column. Acta Med Okayama. 2009;63:65–9.

    Google Scholar 

  8. Tani T, Shimizu T, Tani M, Shoji H, Endo Y. Anti-endotoxin properties of polymyxin B-immobilized fibres. Adv Exp Med Biol. 2019;1145:321–41.

    Article  CAS  Google Scholar 

  9. Cruz DN, Antonelli M, Fumagalli R, et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA. 2009;301(23):2445–52.

    Article  CAS  Google Scholar 

  10. Vincent JL, Laterre PF, Cohen J, et al. A pilot-controlled study of a polymyxin B-immobilized hemoperfusion cartridge in patients with severe sepsis secondary to intra-abdominal infection. Shock. 2005;23(5):400–5.

    Article  CAS  Google Scholar 

  11. Nakamura T, Ebihara I, Shoji H, Ushiyama C, Suzuki S, Koide H. Treatment with polymyxin B-immobilized fibre reduces platelet activation in septic shock patients: decrease in plasma levels of soluble P-selectin, platelet factor 4 and β-thromboglobulin. Inflamm Res. 1999;48(4):171–5.

    Article  CAS  Google Scholar 

  12. Suzuki H, Nemoto H, Nakamoto H, et al. Continuous hemodiafiltration with polymyxin-B immobilized fibre is effective in patients with sepsis syndrome and acute renal failure. Ther Apher. 2002;6(3):234–40.

    Article  CAS  Google Scholar 

  13. Tani T, Hanasawa K, Kodama M, et al. Correlation between plasma endotoxin, plasma cytokines, and plasminogen activator inhibitor-1 activities in septic patients. World J Surg. 2001;25(5):660–8.

    Article  CAS  Google Scholar 

  14. Ikeda T, Ikeda K, Nagura M, et al. Clinical evaluation of PMX-DHP for hypercytokinemia caused by septic multiple organ failure. Ther Apher Dial. 2004;8(4):293–8.

    Article  CAS  Google Scholar 

  15. Novelli G, Ferretti G, Poli L, et al. Clinical results of treatment of postsurgical endotoxin-mediated sepsis with polymyxin-B direct hemoperfusion. Transplant Proc. 2010;42(4):1021–4.

    Article  CAS  Google Scholar 

  16. Nemoto H, Nakamoto H, Okada H, et al. Newly developed immobilized polymyxin B fibres improve the survival of patients with sepsis. Blood Purif. 2001;19(4):361–9.

    Article  CAS  Google Scholar 

  17. Navarro R, Guerrero M, Gonzalez M, Quecedo L, Garcia A, Ramasco F. Description of the hemodynamic and respiratory effects of hemoperfusion treatment with polymyxin B in patients with abdominal septic shock. Rev Esp Anestesiol Reanim. 2013;60:344–7.

    Article  CAS  Google Scholar 

  18. Payen DM, Guilhot J, Launey Y, et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med. 2015;41(6):975–84.

    Article  CAS  Google Scholar 

  19. Dellinger RP, Bagshaw SM, Antonelli M, Foster DM, Klein DJ, Marshall JC, Palevsky PM, Weisberg LS, Schorr CA, Trzeciak S, Walker PM, EUPHRATES Trial Investigators. Effect of targeted polymyxin b hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level: the EUPHRATES randomized clinical trial. JAMA. 2018;320(14):1455–63.

    Article  CAS  Google Scholar 

  20. Terayama T, Yamakawa K, Umemura Y, Aihara M, Fujimi S. Polymyxin B hemoperfusion for sepsis and septic shock: a systematic review and meta-analysis. Surg Infect. 2017;18(3):225–33.

    Article  Google Scholar 

  21. Fujii T, Ganeko R, Kataoka Y, et al. Polymyxin B-immobilized hemoperfusion and mortality in critically ill adult patients with sepsis/septic shock: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018;44(2):167–78.

    Article  CAS  Google Scholar 

  22. Broman ME, Hansson F, Vincent JL, Bodelsson M. Endotoxin and cytokine reducing properties of the oXiris membrane in patients with septic shock: a randomized crossover double-blind study. PLoS One. 2019;14(8):e0220444.

    Article  CAS  Google Scholar 

  23. De Rosa S, Villa G, Ronco C. The golden hour of polymyxin B hemoperfusion in endotoxic shock: the basis for sequential extracorporeal therapy in sepsis. Artif Organs. 2020;44(2):184–6.

    Article  Google Scholar 

  24. Yatera K, Yamasaki K, Kawanami T, Tokuyama S, Ogoshi T, Kouzaki M, Nagata S, Nishida C, Yoshii C, Mukae H. A case of successful treatment with polymyxin B-immobilized fibre column direct hemoperfusion in acute respiratory distress syndrome after influenza A infection. Intern Med. 2011;50(6):601–5.

    Article  Google Scholar 

  25. De Rosa S, Cutuli SL, Ferrer R, Antonelli M, Ronco C, COVID-19 EUPHAS2 Collaborative Group. Polymyxin B hemoperfusion in coronavirus disease 2019 patients with endotoxic shock: case series from EUPHAS2 registry. Artif Organs. 2021;45(6):E187–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

14.1 Electronic Supplementary Material

Data 14.1

(PPTX 284 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Rosa, S., Lorenzin, A., Villa, G., Ronco, C. (2023). Extracorporeal Removal of Endotoxin. In: De Rosa, S., Villa, G. (eds) Endotoxin Induced-Shock: a Multidisciplinary Approach in Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-031-18591-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18591-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18590-8

  • Online ISBN: 978-3-031-18591-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics