Skip to main content

A Review of Mobile Computation Offloading Techniques

  • Conference paper
  • First Online:
Intelligent Cyber Physical Systems and Internet of Things (ICoICI 2022)

Abstract

More and more people are increasingly using multimedia on their mobile devices, such as smartphones, tablet PCs and smart watches as a result of technological improvements. The most significant elements of a mobile device are the battery life, memory, bandwidth, and CPU performance. When such computationally extensive tasks are performed on a mobile device, the battery quickly drains. However, offloading such tasks to a proxy and executing those results in significant power savings in mobile devices. We compare the ways of offloading to a proxy from a mobile device in this study based on power usage, energy, and execution time. A thorough examination of the offloading process is also presented. The findings show a significant reduction in the amount of energy consumed by mobile devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kovachev D, Yu T, Klamma R (2012) Adaptive computation offloading from mobile devices into the cloud. In: 2012 IEEE 10th international symposium on parallel and distributed processing with applications. IEEE

    Google Scholar 

  2. Xia F et al. (2014) Phone2Cloud: exploiting computation offloading for energy saving on smartphones in mobile cloud computing. Inf Syst Front 16(1):95–111. Elissa K, Title of paper if known, unpublished

    Google Scholar 

  3. Tao Y, Zhang Y, Ji Y (2015) Efficient computation offloading strategy for mobile cloud computing. Proc IEEE Int Conf Adv Inf Net Appl (AINA 2015)

    Google Scholar 

  4. Elgazzar K, Martin P, Hassanein HS (1989) Cloud-assisted computation offloading to support mobile services. IEEE Trans Cloud Comput 4(3):279–292. Young M (1989) The technical writer’s handbook. University Science, Mill Valley, CA

    Google Scholar 

  5. Zhang Z, Lim H, Lee HJ (2014) An efficient framework for computation offloading in mobile cloud computing. Int Conf Future Inf Commun Eng 6(1)

    Google Scholar 

  6. Kejariwal A et al. Energy efficient watermarking on mobile devices using proxy-based partitioning. IEEE Trans Very Large Scale Integr (VLSI) Syst 14(6):625–636

    Google Scholar 

  7. Wu H, Wang Q, Wolter K (2013) Tradeoff between performance improvement and energy saving in mobile cloud offloading systems. Proc Int Conf Commun Workshops (ICC):728732

    Google Scholar 

  8. Wu H (2015) Analysis of offloading decision making in mobile cloud computing. Ph.D. dissertation, Department of FB Mathematik und Informatik, Freie Universitaet, Berlin, Germany

    Google Scholar 

  9. Nguyen PD, Ha VN, Le LB (2019) Computation offloading and resource allocation for backhaul limited cooperative MEC systems. In: Proceedings of the 90th vehicular technology conference (VTC2019-Fall), pp 1–6

    Google Scholar 

  10. Aazam M, Zeadally S, Harras KA (2018) Offloading in fog computing for IoT: review, enabling technologies, and research opportunities. Future Gener Comput Syst 87:278–289

    Google Scholar 

  11. Wang F, Diao B, Sun T, Xu Y (2020) Data security and privacy challenges of computing offloading in FINs. IEEE Network 34(2):14–20

    Article  Google Scholar 

  12. Behera SR, Panigrahi N, Bhoi S, Sahani A, Mohanty J., Sahoo D, Maharana A, Kanta LP, Mishra P (2020) A novel decision making strategy for computation offloading in mobile edge computing. In Proceedings of 2020 international conference on computer science, engineering and applications (ICCSEA), pp 1–5

    Google Scholar 

  13. Akherfi K, Gerndt M, Harroud H (2018) Mobile cloud computing for computation offloading: Issues and challenges. Appl Comput Informat 14(1):1–16

    Article  Google Scholar 

  14. Peng K, Zhao B, Xue S, Huang Q (2020) Energy- and resource-aware computation offloading for complex tasks in edge environment. Complexity

    Google Scholar 

  15. Alqarni MM, Cherif A, Alkayal E (2021) A survey of computational offloading in cloud/edge-based architectures: strategies, optimization models and challenges. KSII Trans Internet Inf Syst (TIIS) 15(3):952–973

    Google Scholar 

  16. Zhang T (2017) Data offloading in mobile edge computing: a coalition and pricing based approach. IEEE Access 6:2760–2767

    Article  Google Scholar 

  17. Xu Z et al. (2019) A time-efficient data offloading method with privacy preservation for intelligent sensors in edge computing. EURASIP J Wireless Commun Netw 2019(1):1–12

    Google Scholar 

  18. Sun H, Zhou F, Hu RQ (2019) Joint offloading and computation energy efficiency maximization in a mobile edge computing system. IEEE Trans Veh Technol 68(3):3052–3056

    Google Scholar 

  19. Khan MA (2015) A survey of computation offloading strategies for performance improvement of applications running on mobile devices. J Netw Comput Appl 56:28–40

    Article  Google Scholar 

  20. Ning Z et al. (2018) A cooperative partial computation offloading scheme for mobile edge computing enabled Internet of Things. IEEE Internet Things J 6(3):4804–4814

    Google Scholar 

  21. Elgendy IA et al. (2020) Efficient and secure multi-user multi-task computation offloading for mobile-edge computing in mobile IoT networks. IEEE Trans Netw Serv Manag 17(4):2410–2422

    Google Scholar 

  22. Guo H, Liu J, Qin H (2018) Collaborative mobile edge computation offloading for IoT over fiber-wireless networks. IEEE Network 32(1):66–71

    Article  Google Scholar 

  23. Valentino R, Jung W-S, Ko Y-B (2018) A design and simulation of the opportunistic computation offloading with learning-based prediction for unmanned aerial vehicle (uav) clustering networks. Sensors 18(11):3751

    Article  Google Scholar 

  24. Luo J et al. (2019) QoE-driven computation offloading for edge computing. J Syst Architect 97:34–39

    Google Scholar 

  25. Kuang Z et al. (2019) Partial offloading scheduling and power allocation for mobile edge computing systems. IEEE Internet Things J 6(4):6774–6785

    Google Scholar 

  26. Saleem U et al. (2020) Latency minimization for D2D-enabled partial computation offloading in mobile edge computing. IEEE Trans Veh Technol 69(4):4472–4486

    Google Scholar 

  27. Qin M et al. (2017) Service-oriented energy-latency tradeoff for iot task partial offloading in mec-enhanced multi-rat networks. IEEE Internet Things J 8(3):1896–1907. Mach P, Becvar Z (2017) Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun Surv Tuts 19(3):1628–1656, 3rd Quart

    Google Scholar 

  28. Nir MPS (2014) Scalable resource augmentation for mobile devices. Ph.D. dissertation, Department of Systems and Computers Engineering, Carleton University, Ottawa, ON, Canada

    Google Scholar 

  29. Wang Y, Sheng M, Wang X, Wang L, Li J (2016) Mobile-edge computing: partial computation offloading using dynamic voltage scaling. IEEE Trans Commun 64(10):4268–4282

    Google Scholar 

  30. Rahmati A, Zhong L (2007) Context-for-wireless: Context-sensitive energy-efficient wireless data transfer. In: Proceedings of 5th international conference mobile systems applications services, pp 165–178

    Google Scholar 

  31. Lin Y-D, Chu ET-H, Lai Y-C, Huang T-J (2013) Time-and-energyaware computation offloading in handheld devices to coprocessors and clouds. IEEE Syst J 9(2):393405

    Google Scholar 

  32. Miettinen AP, Nurminen JK (2010) Energy efficiency of mobile clients in cloud computing. In: Proceedings of 2nd USENIX conference hot topics in cloud computing, p 4

    Google Scholar 

  33. Gember A, Dragga C, Akella A (2012) ECOS: practical mobile application offloading for enterprises. In: Proceedings of international conference mobile systems application services, p 4

    Google Scholar 

  34. Mehmeti F, Spyropoulos T (2013) Performance analysis of `on-the-spot’ mobile data offloading. In: Proceedings global communication conference (GLOBECOM), pp 1577–1583

    Google Scholar 

  35. Mehmeti F, Spyropoulos T (2014) Is it worth to be patient? Analysis and optimization of delayed mobile data offloading. In: Proceedings INFOCOM:2364–2372

    Google Scholar 

  36. Jiang C et al. (2019) Toward computation offloading in edge computing: a survey. IEEE Access 7(2019):131543–131558

    Google Scholar 

  37. Yuan C, Chen Y, Zhang Z (2004) Evaluation of edge caching/offloading for dynamic content delivery. IEEE Trans Knowl Data Eng 16(11):1411–1423

    Article  Google Scholar 

  38. Wu H, Knottenbelt W, Wolter K, Sun Y (2016) An optimal offloading partitioning algorithm in mobile cloud computing. In: Proceedings international conference quantitative evaluation systems, pp 311–328

    Google Scholar 

  39. Chen M, Hao Y, Qiu M, Song J, Wu D, Humar I (2016) Mobility-aware caching and computation offloading in 5G ultra-dense cellular networks. Sensors 16(7):974

    Article  Google Scholar 

  40. Cuervo E et al (2010) MAUI: making smartphones last longer with code offload. In: Proceedings of the 8th international conference mobile systems applications services, pp 49–62

    Google Scholar 

  41. Zhou, Yu FR, Chen J, Kuo Y (2017) Resource allocation for information-centric virtualized heterogeneous networks with in-network caching and mobile edge computing. IEEE Trans Veh Technol 66(12):11339–11351

    Google Scholar 

  42. Lin Y, Kemme B, Patino-Martinez M, Jimenez-Peris R (2007) Enhancing edge computing with database replication. In: Proceedings 26th IEEE international symposium reliable distributed systems (SRDS):45–54

    Google Scholar 

  43. Malik SUR et al. (2021) EFFORT: energy efficient framework for offload communication in mobile cloud computing. Softw Pract Experience 51(9):1896–1909

    Google Scholar 

  44. Wu H, Huang D (2014) Modeling multi-factor multi-site risk-based offloading for mobile cloud computing. In: Proceedings 10th international conference networks service management (CNSM), pp 230–235

    Google Scholar 

  45. Flores H, Srirama SN (2014) Mobile cloud middleware. J Syst Softw 92:8294

    Article  Google Scholar 

  46. Wang C, Li Z (2004) A computation offloading scheme on handheld devices. J Parallel Distrib Comput 64(6):740–746

    Article  MATH  Google Scholar 

  47. Hyytiä E, Spyropoulos T, Ott J (2015) Offload (only) the right jobs: Robust offloading using the Markov decision processes. In: Proceedings 16th international symposium world wireless, mobile multimedia networks (WoWMoM), pp 19

    Google Scholar 

  48. Kim Y, Lee K, Shroff NB (2014) An analytical framework to characterize the efficiency and delay in a mobile data offloading system. In: Proceedings of the 15th international symposium on mobile ad hoc networking computing, pp 267–276

    Google Scholar 

  49. Mehmeti F, Spyropoulos T (2016) Stay or switch?: Analysis and comparison of delays in cognitive radio networks with interweave and underlay spectrum access. In Proceedings 14th ACM international symposium mobility management wireless access (MobiWac), pp 9–18

    Google Scholar 

  50. Jia M, Cao J, Yang L (2014) Heuristic offloading of concurrent tasks for computation-intensive applications in mobile cloud computing. In: Proceedings IEEE conference computing communication workshops (INFOCOM WKSHPS), Toronto, ON, Canada, pp 352–357

    Google Scholar 

  51. Chen X, Jiao L, Li W, Fu X (2016) Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans Netw 24(5):2795–2808

    Article  Google Scholar 

  52. Khan MA (2015) A survey of computation offloading strategies for performance improvement of applications running on mobile devices. J Netw Comput Appl 56:28–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jyothirmai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jyothirmai, M., Gopal, K., Sailaja, M. (2023). A Review of Mobile Computation Offloading Techniques. In: Hemanth, J., Pelusi, D., Chen, J.IZ. (eds) Intelligent Cyber Physical Systems and Internet of Things. ICoICI 2022. Engineering Cyber-Physical Systems and Critical Infrastructures, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-031-18497-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18497-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18496-3

  • Online ISBN: 978-3-031-18497-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics