Skip to main content

Resampling-Free Bootstrap Inference for Quantiles

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2022, Volume 1 (FTC 2022 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 559))

Included in the following conference series:

  • 866 Accesses

Abstract

Bootstrap inference is a powerful tool for obtaining robust inference for quantiles and difference-in-quantiles estimators. The computationally intensive nature of bootstrap inference has made it infeasible in large-scale experiments. In this paper, the theoretical properties of the Poisson bootstrap algorithm and quantile estimators are used to derive alternative resampling-free algorithms for Poisson bootstrap inference that reduce the computational complexity substantially without additional assumptions. These findings are connected to existing literature on analytical confidence intervals for quantiles based on order statistics. The results unlock bootstrap inference for difference-in-quantiles for almost arbitrarily large samples. At Spotify, we can now easily calculate bootstrap confidence intervals for quantiles and difference-in-quantiles in A/B tests with hundreds of millions of observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to numerical computing. SIAM review, 59(1), pp. 65–98 (2017)

    Google Scholar 

  2. Chamandy, N., Muralidharan, O., Najmi, A., Naidu, S.: Estimating Uncertainty for Massive Data Streams. Technical report, Google (2012)

    Google Scholar 

  3. Chen, J., Revels, J.: Robust benchmarking in noisy environments. arXiv e-prints, arXiv:1608.04295 (2016)

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition (2009)

    Google Scholar 

  5. David, H.A., Nagaraja, H.N.: Order statistics. John Wiley & Sons (2004)

    Google Scholar 

  6. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  7. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1–26 (1979)

    Article  MathSciNet  Google Scholar 

  8. Falk, M., Reiss, R.-D.: Weak convergence of smoothed and nonsmoothed bootstrap quantile estimates. Ann. Probab. 17(1), 362–371 (1989)

    Article  MathSciNet  Google Scholar 

  9. Ghosh, M., Parr, W.C., Singh, K., Babu, G.J.: A Note on Bootstrapping the Sample Median. The Annals of Stat. 12(3), 1130–1135 (1984)

    Google Scholar 

  10. Gibbons, J.D., Chakraborti, S.: Nonparametric statistical inference. CRC press (2014)

    Google Scholar 

  11. Hanley, J.A., MacGibbon, B.: Creating non-parametric bootstrap samples using poisson frequencies. Comput. Methods Programs Biomed. 83(1), 57–62 (2006)

    Article  Google Scholar 

  12. Hutson, A.D.: Calculating nonparametric confidence intervals for quantiles using fractional order statistics. J. Appl. Stat. 26(3), 343–353 (1999)

    Google Scholar 

  13. Kleiner, A., Talwalkar, A., Sarkar, P., Jordan, M.I.: A scalable bootstrap for massive data. J. Royal Stat. Soc.: Series B (Statistical Methodology) 76(4), 795–816 (2014)

    Article  MathSciNet  Google Scholar 

  14. Liu, M., Sun, X., Varshney, M., Xu, Y.: Large-Scale Online Experimentation with Quantile Metrics. arXiv e-prints, arXiv:1903.08762 (2019)

  15. Nyblom, J.: Note on interpolated order statistics. Stat. Probab. Lett. 14(2), 129–131 (1992)

    Article  MathSciNet  Google Scholar 

  16. Rao, C.R., Statistiker, M.: Linear statistical inference and its applications vol. 2, Wiley New York (1973)

    Google Scholar 

  17. Scheffe, H., Tukey, J.W.: Non-Parametric Estimation. I. Validation of Order Statistics. Ann. Math. Stat. 16(2), 187–192 (1945)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge help and feedback from Anton Muratov, Shaobo Jin, Thommy Perlinger and Claire Detilleux.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mårten Schultzberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schultzberg, M., Ankargren, S. (2023). Resampling-Free Bootstrap Inference for Quantiles. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 1. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-031-18461-1_36

Download citation

Publish with us

Policies and ethics