Abstract
Precision agriculture is a vital practice for improving the production of crops. The present work is aimed to develop a deep learning multimodal model that can predict the crop yield in Ecuadorian corn farms. The model takes multispectral images and field sensor data (humidity, temperature, or soil status) to obtain the yield of a crop. The use of multimodal data is aimed to extract hidden patterns in the status of crops and in this way obtain better results than the use of vegetation indices or other state-of-the-art methods. For the experiments, we utilized multi-spectral satellite images obtained from the google earth engine platform and monthly precipitation and temperature data of the 24 Ecuadorian provinces collected from the Ecuadorian Ministry of agriculture and livestock; likewise, we obtained the area of corn plantation in each province and their corn production for the years 2016 to 2020. Results indicate that the use of multimodal deep learning models (pre-trained CNN for images and LSTM for time series sensor data) gives better prediction accuracy than monomodal prediction models.
Keywords
- Precision agriculture
- Remote sensing
- Convolutional neural networks
- Recurrent neural networks
- Multimodal deep learning
This is a preview of subscription content, access via your institution.
Buying options




References
Ramanath, A., Muthusrinivasan, S., Xie, Y., Shekhar, S., Ramachandra, B.: NDVI versus CNN features in deep learning for land cover classification of aerial images. In: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 6483–6486. IEEE (2019)
Tran, T., Choi, J., Le, T., Kim, J.: A comparative study of deep CNN in forecasting and classifying the macronutrient deficiencies on development of tomato plant. Appl. Sci. 9(8), 1601 (2019)
Chlingaryan, A., Sukkarieh, S., Whelan, B.: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Comput. Electron. Agric. 151, 61–69 (2018)
Wiegand, C., Richardson, A., Escobar, D., Gerbermann, A.: Vegetation indices in crop assessments. Remote Sens. Environ. 35(2–3), 105–119 (1991)
Basso, B., Cammarano, D., Carfagna, E.: Review of crop yield forecasting methods and early warning systems. In: Proceedings of the First Meeting of the Scientific Advisory Committee of the Global Strategy to Improve Agricultural and Rural Statistics, FAO Headquarters, Rome, Italy, pp. 18–19 (2013)
Mahdavinejad, M., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth, A.: Machine learning for Internet of Things data analysis: a survey. Digit. Commun. Netw. 4(3), 161–175 (2018)
Gondchawar, N., Kawitkar, R.: IoT based smart agriculture. Int. J. Adv. Res. Comput. Commun. Eng. 5(6), 838–842 (2016)
Muangprathub, J., Boonnam, N., Kajornkasirat, S., Lekbangpong, N., Wanichsombat, A., Nillaor, P.: IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 156, 467–474 (2019)
Kim, T., Ramos, C., Mohammed, S.: Smart city and IoT (2017)
Samuel, S.: A review of connectivity challenges in IoT-smart home. In: 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC), pp. 1–4. IEEE (2016)
Kim, Y., Park, Y., Choi, J.: A study on the adoption of IoT smart home service: using value-based adoption model. Total Qual. Manag. Bus. Excell. 28(9–10), 1149–1165 (2017)
Ukil, A., Bandyoapdhyay, S., Puri, C., Pal, A.: IoT healthcare analytics: the importance of anomaly detection. In: 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), pp. 994–997. IEEE (2016)
Tyagi, S., Agarwal, A., Maheshwari, P.: A conceptual framework for IoT-based healthcare system using cloud computing. In: 2016 6th International Conference-Cloud System and Big Data Engineering (Confluence), pp. 503–507. IEEE (2016)
Rghioui, A., Sendra, S., Lloret, J., Oumnad, A.: Internet of Things for measuring human activities in ambient assisted living and e-health. Netw. Protoc. Algorithms 8(3), 15–28 (2016)
Shi, C., Liu, J., Liu, H., Chen, Y.: Smart user authentication through actuation of daily activities leveraging WiFi-enabled IoT. In: Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 1–10 (2017)
Al-Douri, Y.K., Hamodi, H., Lundberg, J.: Time series forecasting using a two-level multi-objective genetic algorithm: a case study of maintenance cost data for tunnel fans. Algorithms 11(8), 123 (2018)
Baptista, M., Sankararaman, S., de Medeiros, I., Nascimento, C., Jr., Prendinger, H., Henriques, E.: Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling. Comput. Ind. Eng. 115, 41–53 (2018)
Kamir, E., Waldner, F., Hochman, Z.: Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods. ISPRS J. Photogramm. Remote. Sens. 160, 124–135 (2020)
Adeniyi, O.D., Szabo, A., Tamás, J., Nagy, A.: Wheat Yield Forecasting Based on Landsat NDVI and SAVI Time Series (2020)
Kadri, F., Harrou, F., Chaabane, S., Tahon, C.: Time series modelling and forecasting of emergency department overcrowding. J. Med. Syst. 38(9), 1–20 (2014). https://doi.org/10.1007/s10916-014-0107-0
Demir, E., Dincer, S.: Place and solution proposals of data mining in production planning and control processes: a business application. Press Academia Procedia 11(1), 189–193 (2020)
Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep Boltzmann machines. In: Advances in Neural Information Processing Systems, vol. 25 (2012)
Ramachandram, D., Taylor, G.: Deep multimodal learning: a survey on recent advances and trends. IEEE Sig. Process. Mag. 34(6), 96–108 (2017)
Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F., Fritschi, F.: Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 237, 111599 (2020)
Yalcin, H.: Plant phenology recognition using deep learning: Deep-Pheno. In: 2017 6th International Conference on Agro-Geoinformatics, pp. 1–5. IEEE (2017)
Zheng, Y.Y., Kong, J.L., Jin, X.B., Wang, X.Y., Su, T.L., Zuo, M.: CropDeep: the crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 19(5), 1058 (2019)
Nilsback, M., Zisserman, A.: A visual vocabulary for flower classification. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), New York, NY, USA, pp. 1447–1454 (2006)
Kumar, N., et al.: Leafsnap: a computer vision system for automatic plant species identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision, vol. 7573, pp. 502–516. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_36
Wegner, J., Branson, S., Hall, D., Schindler, K., Perona, P.: Cataloging public objects using aerial and street-level images-urban trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas Valley, NV, USA, pp. 6014–6023 (2016)
Kamilaris, A., Prenafeta-Boldú, F.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)
Bender, A., Whelan, B., Sukkarieh, S.: Ladybird Cobbitty 2017 Brassica dataset (2019)
Gandhi, A., Sharma, A., Biswas, A., Deshmukh, O.: GeThR-Net: a generalized temporally hybrid recurrent neural network for multimodal information fusion. In: Hua, G., Jégou, H. (eds.) Computer Vision, vol. 9914, pp. 883–899. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_58
Gao, J., Li, P., Chen, Z., Zhang, J.: A survey on deep learning for multimodal data fusion. Neural Comput. 32(5), 829–864 (2020)
Zhao, X., et al.: Use of unmanned aerial vehicle imagery and deep learning UNet to extract rice lodging. Sensors 19(18), 3859 (2019)
Chen, W., Wang, W., Liu, L., Lew, M.: New ideas and trends in deep multimodal content understanding: a review. arXiv preprint https://arxiv.org/abs/2010.08189 (2020)
Iniap. http://www.iniap.gob.ec/pruebav3/wp-content/uploads/2018/03/281-iniap-OK-baja.pdf
Sistema de Información Pública Agropecuaria. http://sipa.agricultura.gob.ec/index.php/maiz
Google Earth Engine data catalog, Sentinel-2 MSI. https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jácome-Galarza, LR. (2022). Multimodal Deep Learning for Crop Yield Prediction. In: Abad, K., Berrezueta, S. (eds) Doctoral Symposium on Information and Communication Technologies. DSICT 2022. Communications in Computer and Information Science, vol 1647. Springer, Cham. https://doi.org/10.1007/978-3-031-18347-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-18347-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18346-1
Online ISBN: 978-3-031-18347-8
eBook Packages: Computer ScienceComputer Science (R0)