Skip to main content

Resurrecting Address Clustering in Bitcoin

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13411))

Included in the following conference series:

Abstract

Blockchain analysis is essential for understanding how cryptocurrencies like Bitcoin are used in practice, and address clustering is a cornerstone of blockchain analysis. However, current techniques rely on heuristics that have not been rigorously evaluated or optimized. In this paper, we tackle several challenges of change address identification and clustering. First, we build a ground truth set of transactions with known change from the Bitcoin blockchain that can be used to validate the efficacy of individual change address detection heuristics. Equipped with this data set, we develop new techniques to predict change outputs with low false positive rates. After applying our prediction model to the Bitcoin blockchain, we analyze the resulting clustering and develop ways to detect and prevent cluster collapse. Finally, we assess the impact our enhanced clustering has on two exemplary applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our definition is unrelated to the isStandard test in the Bitcoin reference implementation that checks whether a transaction uses common script types.

  2. 2.

    https://github.com/maltemoeser/address-clustering-data.

  3. 3.

    This corresponds to a false positive rate of 0.044% for RF-1. We use a threshold of 0.997 for RF-2 to match the FPR.

  4. 4.

    https://arxiv.org/abs/2107.05749.

References

  1. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_4

    Chapter  Google Scholar 

  2. Bartoletti, M., Pes, B., Serusi, S.: Data mining for detecting bitcoin Ponzi schemes. In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 75–84. IEEE (2018)

    Google Scholar 

  3. Bartoletti, M., Pompianu, L.: An analysis of bitcoin OP_RETURN metadata. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 218–230. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_14

    Chapter  Google Scholar 

  4. Bitcoin core 0.16.0. https://bitcoincore.org/en/releases/0.16.0/

  5. Blockchair.com API VOL 2.0.76 documentation: Privacy-o-meter. https://blockchair.com/api/docs#link_M6

  6. Chang, T.-H., Svetinovic, D.: Improving bitcoin ownership identification using transaction patterns analysis. IEEE Trans. Syst. Man Cybern Syst. 50(1), 9–20 (2018)

    Article  Google Scholar 

  7. Conti, M., Gangwal, A., Ruj, S.: On the economic significance of ransomware campaigns: a bitcoin transactions perspective. Comput. Secur. 79, 162–189 (2018)

    Article  Google Scholar 

  8. Dorier, N.: A simple Payjoin proposal. https://github.com/bitcoin/bips/blob/master/bip-0078.mediawiki

  9. Ermilov, D., Panov, M., Yanovich, Y.: Automatic bitcoin address clustering. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 461–466. IEEE (2017)

    Google Scholar 

  10. Graphsense public tagpacks. https://github.com/graphsense/graphsense-tagpacks

  11. Harlev, M.A., Yin, H,S., Langenheldt, K.C., Mukkamala, R., Vatrapu, R.: Breaking bad: de-anonymising entity types on the bitcoin blockchain using supervised machine learning. In: Proceedings of the 51st Hawaii International Conference on System Sciences (2018)

    Google Scholar 

  12. Harrigan, M., Fretter, C.: The unreasonable effectiveness of address clustering. In: 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 368–373. IEEE (2016)

    Google Scholar 

  13. Hu, Y., Seneviratne, S., Thilakarathna, K., Fukuda, K., Seneviratne, A.: Characterizing and detecting money laundering activities on the bitcoin network. arXiv preprint arXiv:1912.12060 (2019)

  14. Huang, D.Y., et al.: Tracking ransomware end-to-end. In: IEEE Symposium on Security and Privacy, pp. 618–631. IEEE (2018)

    Google Scholar 

  15. Jourdan, M., Blandin, S., Wynter, L., Deshpande, P.: Characterizing entities in the bitcoin blockchain. In: 2018 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 55–62. IEEE (2018)

    Google Scholar 

  16. Kalodner, H., et al.: BlockSci: design and applications of a blockchain analysis platform. In: 29th USENIX Security Symposium, pp. 2721–2738 (2020)

    Google Scholar 

  17. Lin, Y.-J., Wu, P.-W., Hsu, C.-H., Tu, I.-P., Liao, S.: An evaluation of bitcoin address classification based on transaction history summarization. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 302–310. IEEE (2019)

    Google Scholar 

  18. Di Francesco, D., Maesa, A.M., Ricci, L.: Data-driven analysis of bitcoin properties: exploiting the users graph. Int. J. Data Sci. Anal. 6(1), 63–80 (2018)

    Article  Google Scholar 

  19. Maxwell, G.: CoinJoin: bitcoin Privacy for the Real World (2013). https://bitcointalk.org/index.php?topic=279249.0

  20. Meiklejohn, S., Orlandi, C.: Privacy-enhancing overlays in bitcoin. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 127–141. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9_10

    Chapter  Google Scholar 

  21. Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men with no names. In: Internet Measurement Conference, pp. 127–140. ACM (2013)

    Google Scholar 

  22. Möser, M., Böhme, R.: The price of anonymity: empirical evidence from a market for bitcoin anonymization. J. Cybersecur. 3(2), 127–135 (2017)

    Article  Google Scholar 

  23. Nick, J.D.: Data-driven de-anonymization in bitcoin (2015)

    Google Scholar 

  24. Parino, F., Beiró, M.G., Gauvin, L.: Analysis of the bitcoin blockchain: socio-economic factors behind the adoption. EPJ Data Sci. 7(1), 38 (2018)

    Google Scholar 

  25. Privacy - bitcoin wiki. https://en.bitcoin.it/Privacy

  26. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: Altshuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and Privacy in Social Networks. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4139-7_10

  27. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_2

    Chapter  Google Scholar 

  28. Schatzmann, J.E., Haslhofer, B.: Bitcoin trading is irrational! an analysis of the disposition effect in bitcoin. arXiv preprint arXiv:2010.12415 (2020)

  29. SegWit FAQ. https://help.coinbase.com/en/pro/getting-started/general-crypto-education/segwit-faq

  30. Todd, P.: Discourage fee sniping with nLockTime #2340 (2014). https://github.com/bitcoin/bitcoin/pull/2340

  31. Toyoda, K., Ohtsuki, T., Mathiopoulos, P.T.: Multi-class bitcoin-enabled service identification based on transaction history summarization. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1153–1160. IEEE (2018)

    Google Scholar 

  32. Weber, M., et al.: Anti-money laundering in bitcoin: experimenting with graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019)

  33. Zhang, Y., Wang, J., Luo, J.: Heuristic-based address clustering in bitcoin. IEEE Access 8, 210582–210591 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

We thank Rainer Böhme and Kevin Lee for their feedback on an earlier draft of this paper. This work is supported by NSF Award CNS-1651938 and a grant from the Ripple University Blockchain Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Möser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Möser, M., Narayanan, A. (2022). Resurrecting Address Clustering in Bitcoin. In: Eyal, I., Garay, J. (eds) Financial Cryptography and Data Security. FC 2022. Lecture Notes in Computer Science, vol 13411. Springer, Cham. https://doi.org/10.1007/978-3-031-18283-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18283-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18282-2

  • Online ISBN: 978-3-031-18283-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics