Skip to main content

Relaxation Under Geometric Constraints I: Classical Processes

  • Chapter
  • First Online:
An Introduction to Anomalous Diffusion and Relaxation

Part of the book series: PoliTO Springer Series ((PTSS))

  • 504 Accesses

Abstract

In this and the next chapter, we shall examine the relaxation behavior of classical and quantum systems under geometric constraints represented by structures known as comb models. These models with fractional time derivatives are a reasonable abstraction for systems in which the interplay between temporal and spatial disorders is present. The results provide theoretical knowledge about the importance of interaction between geometrical restrictions and memory effects on anomalous diffusion. This chapter focuses the anomalous diffusion process emerging in classical systems, also taking into account the presence of reaction-diffusion processes at the interfaces. A generalization of the comb model is analyzed as a tool to account for annealed and quenched disorder. The crossover between different diffusive regimes and its physical explanations point towards possible applications to some experimental contexts involving anisotropic diffusion and biophysical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  2. A.A. Kilbas, H-Transforms: Theory and Applications (CRC Press, Boca Raton, 2004)

    Book  MATH  Google Scholar 

  3. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An introduction to Mathematical Models (Imperial College Press, London, 2010)

    Book  MATH  Google Scholar 

  4. T.R. Prabhakar, A singular equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    Google Scholar 

  5. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  6. J.-P. Bouchaud, A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  7. R. Metzler, J.-H. Jeon, A.G. Cherstvy, E. Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16, 24128–24164 (2014)

    Article  Google Scholar 

  8. A. Coniglio, Thermal phase transition of the dilute s-state Potts and n-vector models at the percolation threshold. Phys. Rev. Lett. 46, 250–253 (1981)

    Article  Google Scholar 

  9. H. E. Stanley and A. Coniglio, Flow in porous media: the “backbone” fractal at the percolation threshold. Phys. Rev. B 29, 522 (R) (1984)

    Google Scholar 

  10. S.R. White, M. Barma, Field-induced drift and trapping in percolation networks. J. Phys. A: Math. Gen. 17, 2995–3008 (1984)

    Article  Google Scholar 

  11. S. Havlin, J.E. Kiefer, G.H. Weiss, Anomalous diffusion on a random comblike structure. Phys. Rev. A 36, 1403–1408 (1987)

    Article  Google Scholar 

  12. V.E. Arkhincheev, E.M. Baskin, Anomalous diffusion and drift in a comb model of percolation clusters. Sov. Phys. JETP 73, 161–165 (1991)

    Google Scholar 

  13. V.E. Arkhincheev, Random walk on hierarchical comb structures. J. Exp. Theor. Phys. 88, 710–715 (1999)

    Article  Google Scholar 

  14. S.A. El-Wakil, M.A. Zahran, E.M. Abulwafa, The diffusion-drift equation on comb-like structure. Phys. A 303, 27–34 (2002)

    Article  MATH  Google Scholar 

  15. A. Iomin, E. Baskin, Negative superdiffusion due to inhomogeneous convection. Phys. Rev. E 71, 061101 (2005)

    Article  Google Scholar 

  16. M.A. Zahran, On the derivation of fractional diffusion equation with an absorbent term and a linear external force. Appl. Math. Model. 33, 3088–3092 (2009)

    Article  Google Scholar 

  17. A. Iomin, Subdiffusion on a fractal comb. Phys. Rev. E 83, 052106 (2011)

    Article  Google Scholar 

  18. T. Sandev, A. Iomin, H. Kantz, Fractional diffusion on a fractal grid comb. Phys. Rev. E 91, 032108 (2015)

    Article  MathSciNet  Google Scholar 

  19. T. Sandev, A. Iomin, V. Méndez, Lévy processes on a generalized fractal comb. J. Phys. A: Math. Theor. 49, 355001 (2016)

    Article  MATH  Google Scholar 

  20. T. Sandev, A. Iomin, H. Kantz, Anomalous diffusion on a fractal mesh. Phys. Rev. E 95, 052107 (2017)

    Article  Google Scholar 

  21. A.A. Tateishi, H.V. Ribeiro, T. Sandev, I. Petreska, E.L. Lenzi, Quenched and annealed disorder mechanisms in comb models with fractional operators. Phys. Rev. E 101, 022135 (2020)

    Article  Google Scholar 

  22. I.M. Sokolov, Thermodynamics and fractional Fokker-Planck equations. Phys. Rev. E 63, 056111 (2001)

    Article  Google Scholar 

  23. K. Suleiman, Q. Song, X. Zhang, S. Liu, L. Zheng, Anomalous diffusion in a circular comb with external velocity field. Chaos Solit. Fractals 155, 111742 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. E.K. Lenzi, H.V. Ribeiro, M.K. Lenzi, L.R. Evangelista, R.L. Magin, Fractional diffusion with geometric constraints: application to signal decay in magnetic resonance imaging (MRI). Mathematics 10, 389 (2022)

    Article  Google Scholar 

  25. T. Sandev, V. Domazetoski, A. Iomin, L. Kocarev, Diffusion-advection equations on a comb: resetting and random search. Mathematics 9, 221 (2021)

    Article  Google Scholar 

  26. Z. Wang, P. Lin, E. Wang, Modeling multiple anomalous diffusion behaviors on comb-like structures. Chaos Solit. Fractals 148, 111009 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Domazetoski, A. Masó-Puigdellosas, T. Sandev, V. Méndez, A. Iomin, L. Kocarev, Stochastic resetting on comblike structures. Phys. Rev. Res. 2, 033027 (2020)

    Article  Google Scholar 

  28. R. Cakir, A. Krokhin, P. Grigolini, From the trajectory to the density memory. Chaos, Solitons & Fractals 34, 19–32 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. I.M. Sokolov, J. Klafter, From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. Chaos 15, 026103 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129 (2002)

    Article  Google Scholar 

  31. I.M. Sokolov, Solutions of a class of non-Markovian Fokker-Planck equations. Phys. Rev. E 66, 041101 (2002)

    Article  MathSciNet  Google Scholar 

  32. E.K. Lenzi, C.A.R. Yednak, L.R. Evangelista, Non-Markovian diffusion and the adsorption-desorption process. Phys. Rev. E 81, 011116 (2010)

    Article  Google Scholar 

  33. Y. Liang, S. Wang, W. Chen, Z. Zhou, R.L. Magin, A survey of models of ultraslow diffusion in heterogeneous materials. Appl. Mech. Rev. 71, 040802 (2019)

    Article  Google Scholar 

  34. A. Iomin, V. Méndez, W. Horsthemke, Fractional Dynamics in Comb-like Structures (World Scientific, Singapore, 2018)

    Book  MATH  Google Scholar 

  35. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  36. L.R. Evangelista, E.K. Lenzi, Fractional Diffusion Equations and Anomalous Diffusion (Cambridge University Press, Cambridge, 2018)

    Book  MATH  Google Scholar 

  37. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. E. Barkai, Fractional Fokker-Planck equation, solution, and application. Phys. Rev. E 63, 046118 (2001)

    Article  Google Scholar 

  39. E.K. Lenzi, L.R. da Silva, T. Sandev, R.S. Zola, Solutions for a fractional diffusion equation in heterogeneous media. J. Stat. Mech.: Theor. Exp. 3, 033205 (2019)

    Google Scholar 

  40. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  41. J. Hristov, Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Therm. Sci. 20, 757–762 (2016)

    Google Scholar 

  42. J.F. Gómez-Aguilar, Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel. Physica A 465, 562–572 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  44. J. Hristov, Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. Front. Fract. Calc. 1, 270–342 (2017)

    Google Scholar 

  45. A.A. Tateishi, H.V. Ribeiro, E.K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion. Front. Phys. 5, 52 (2017)

    Article  Google Scholar 

  46. E. Basa, B. Acay, R. Ozarslan, Fractional models with singular and non-singular kernels for energy efficient buildings. Chaos 29, 023110 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. 143, D4016005 (2017)

    Google Scholar 

  48. J.F. Gomez-Aguilar, V.F. Morales-Delgado, M.A. Taneco-Hernandez, D. Baleanu, R.F. Escobar-Jimanez, M.M. AlQurashi, Analytical solutions of the electrical RLC circuit via Liouville Caputo operators with local and non-local kernels. Entropy 18, 402 (2016)

    Article  Google Scholar 

  49. H.V. Ribeiro, A.A. Tateishi, L.G.A. Alves, R.S. Zola, E.K. Lenzi, Investigating the interplay between mechanisms of anomalous diffusion via fractional Brownian walks on a comb-like structure. New J. Phys. 16, 093050 (2014)

    Article  Google Scholar 

  50. T. Sandev, R. Metzler, A. Chechkin, From continuous time random walks to the generalized diffusion equation. Fract. Calc. Appl. Anal. 21, 10–28 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. T. Sandev, I. Sokolov, R. Metzler, A. Chechkin, Beyond monofractional kinetics. Chaos, Solitons & Fractals 102, 210–217 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. L.E. Sereshki, M.A. Lomholt, R. Metzler, A solution to the subdiffusion-efficiency paradox: inactive states enhance reaction efficiency at subdiffusion conditions in living cells 97. Europhys. Lett. 97, 20008 (2012)

    Article  Google Scholar 

  53. E. Barkai, Y. Garini, R. Metzler, Strange kinetics of single molecules in living cells. Phys. Today 65, 29–35 (2012)

    Article  Google Scholar 

  54. J.J. Barr, R. Auro, N.S. Soon, S. Kessegne, F. Rohwer, B.A. Bailey, Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters. Proc. Natl. Acad. Sci USA 112, 313675–313680 (2015)

    Article  Google Scholar 

  55. I. Golding, E.C. Cox, Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96, 098102 (2006)

    Article  Google Scholar 

  56. G. Guigas, M. Weiss, Sampling the cell with anomalous diffusion-the discovery of slowness. Biophys. J. 94, 90–94 (2008)

    Article  Google Scholar 

  57. T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  58. M.C. Wang, G.E. Uhlenbeck, On the theory of the Brownian motion II. Rev. Mod. Phys. 17, 323–342 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  59. A. Kusumi, Y. Sako, M. Yamamoto, Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993)

    Google Scholar 

  60. V. Méndez, D. Campos, Characterization of stationary states in random walks with stochastic resetting. Phys. Rev. E 93, 022106 (2016)

    Article  Google Scholar 

  61. V. Méndez, A. Iomin, D. Campos, W. Horsthemke, Mesoscopic description of random walks on combs. Phys. Rev. E 92, 062112 (2015)

    Article  MathSciNet  Google Scholar 

  62. D. Boyer, C. Solis-Salas, Random walks with preferential relocations to places visited in the past and their application to biology. Phys. Rev. Lett. 112, 240601 (2014)

    Google Scholar 

  63. T. Sandev, A. Chechkin, H. Kantz, R. Metzler, Diffusion and Fokker-Planck-Smoluchowski equations with generalized memory kernel. Fract. Calc. Appl. Anal. 18, 1006–1038 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. R. Garra, R. Garrappa, The Prabhakar or three parameter Mittag-Leffler function: theory and application. Commun. Nonlin. Sci. Numer. Simul. 56, 314–329 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  65. S. Havlin, D. Ben-Avraham, Diffusion in disordered media. Adv. Phys. 51, 187–292 (2002)

    Article  Google Scholar 

  66. A.M. Berezhkovskii, L. Dagdug, S.M. Bezrukov, Biased diffusion in three-dimensional comb-like structures. J. Chem. Phys. 142, 134101 (2015)

    Article  Google Scholar 

  67. V.E. Arkhincheev, Random walks on the Comb model and its generalizations. Chaos 17, 043102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  68. B. Tsang, Z.E. Dell, L. Jiang, K.S. Schweizer, S. Granick, Dynamic cross-correlations between entangled biofilaments as they diffuse. Proc. Natl. Acad. Sci. USA 114, 3322–3327 (2017)

    Article  Google Scholar 

  69. P. Tan, Y. Liang, Q. Xu, E. Mamontov, J. Li, X. Xing, L. Hong, Gradual crossover from subdiffusion to normal diffusion: a many-body effect in protein surface water. Phys. Rev. Lett. 120, 248101 (2018)

    Article  Google Scholar 

  70. A.S. Coquel, J.P. Jacob, M. Primet, A. Demarez, M. Dimiccoli, T. Julou, L. Moisan, A.B. Lindner, H. Berry, Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect. PLoS Comput. Biol. 9, e1003038 (2013)

    Article  Google Scholar 

  71. V.E. Tarasov, Fractional generalization of Liouville equations. Chaos 14, 123–127 (2004)

    Article  Google Scholar 

  72. A. Zhokh, A. Trypolskyi, P. Strizhak, Relationship between the anomalous diffusion and the fractal dimension of the environment. Chem. Phys. 503, 71–76 (2018)

    Article  Google Scholar 

  73. T. Sandev, A. Iomin, H. Kantz, R. Metzler, A. Chechkin, Comb model with slow and ultraslow diffusion. Math. Model. Nat. Phenom. 11, 18–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  74. D. Marin, L.M.S. Guilherme, M.K. Lenzi, L.R. da Silva, E.K. Lenzi, T. Sandev, Diffusion-reaction processes on a backbone structure. Commun. Nonlinear Sci. Numer. Simulat. 85, 105218 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  75. H.W. Wyld, Mathematical Methods for Physics (CRC Press, Boca Raton, 2018)

    Book  MATH  Google Scholar 

  76. L.R. da Silva, A.A. Tateishi, M.K. Lenzi, E.K. Lenzi, P.C. da Silva, Green function for a non-Markovian Fokker-Planck equation: comb model and anomalous diffusion. Braz. J. Phys. 39, 438–487 (2009)

    Article  Google Scholar 

  77. O. Matan, S. Havlin, D. Stauffer, Scaling properties of diffusion on comb-like structures. J. Phys. A: Math. Gen. 22, 2867–2869 (1989)

    Article  Google Scholar 

  78. E. Baskin, A. Iomin, Superdiffusion on a comb structure. Phys. Rev. Lett. 93, 120603 (2004)

    Article  Google Scholar 

  79. E.K. Lenzi, L.R. da Silva, A.A. Tateishi, M.K. Lenzi, H.V. Ribeiro, Diffusive process on a backbone structure with drift terms. Phys. Rev. E 87, 012121 (2013)

    Article  Google Scholar 

  80. A.M. Mathai, R.K. Saxena, H.J. Haubold, The H-Function: Theory and Applications (Springer, Heidelberg, 2009)

    MATH  Google Scholar 

  81. A. Iomin, V. Zaburdaev, T. Pfohl, Reaction front propagation of actin polymerization in a comb-reaction system. Chaos, Solitons & Fractals 92, 115–122 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  82. A. Iomin, V. Méndez, Reaction-subdiffusion front propagation in a comblike model of spiny dendrites. Phys. Rev. E 88, 012706 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Roberto Evangelista .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evangelista, L.R., Lenzi, E.K. (2023). Relaxation Under Geometric Constraints I: Classical Processes. In: An Introduction to Anomalous Diffusion and Relaxation. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-031-18150-4_8

Download citation

Publish with us

Policies and ethics