Skip to main content

Reaction-Diffusion Problems

  • Chapter
  • First Online:
An Introduction to Anomalous Diffusion and Relaxation

Part of the book series: PoliTO Springer Series ((PTSS))

  • 518 Accesses

Abstract

In this chapter, we start by investigating the adsorption-desorption phenomenon followed by a reaction process that may occur on a surface in contact with a system composed of two different kinds of particles, 1 and 2. We consider that generalized diffusion equations govern the diffusion of particles of the system in the bulk. Depending on the conditions required to describe the bulk dynamics, these generalized equations may also be related to the fractional diffusion equations. The processes on the surface are also assumed to be related to linear kinetic equations with memory effects, which may be connected to an unusual (or non-Debye) relaxation. In this approach, we may obtain the behavior of the quantities on the surface, where the processes are present, and in the bulk. Subsequently, we consider the diffusion and reaction processes when surfaces do not limit the system as in the first case, thus obtaining a rich class of behaviors and connecting the processes with the continuous time random walk approach. Furthermore, we also consider the diffusion and reaction processes by incorporating a finite phase velocity into the bulk equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.K. Lenzi, M.K. Lenzi, Solutions for fractional diffusion equations with reactive boundary conditions, in Methods of Mathematical Modelling—Fractional Differential Equations, ed. by H. Singh, D. Kumar, D. Baleanu (CRC Press, Boca Raton, 2020), pp. 21–38

    Google Scholar 

  2. M.E.K. Fuziki, M.K. Lenzi, M.A. Ribeiro, A. Novatski, E.K. Lenzi, Diffusion process and reaction on a surface. Adv. Math. Phys. 6162043 (2018)

    Google Scholar 

  3. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  4. A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  5. J. Hristov, Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Therm. Sci. 20, 757–762 (2016)

    Google Scholar 

  6. J.F. Gómez-Aguilar, A. Atangana, Fractional Hunter-Saxton equation involving partial operators with bi-order in Riemann-Liouville and Liouville-Caputo sense. Eur. Phys. J. Plus 132, 100 (2017)

    Article  Google Scholar 

  7. J.F. Gómez-Aguilar, Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel. Phys. A 465, 562–572 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Hristov, Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. Front. Fract. Calc. 1, 270–342 (2017)

    Google Scholar 

  9. G. Barbero, L.R. Evangelista, E.K. Lenzi, Frequency dispersion in the fractional Langmuir approximation for the adsorption-desorption phenomena. Proc. R. Soc. A 476, 20190570 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. J.L. de Paula, P.A. Santoro, R.S. Zola, E.K. Lenzi, L.R. Evangelista, F. Ciuchi, A. Mazzulla, N. Scaramuzza, Non-Debye relaxation in the dielectric response of nematic liquid crystals: surface and memory effects in the adsorption-desorption process of ionic impurities. Phys. Rev. E 86, 051705 (2012)

    Article  Google Scholar 

  11. E.K. Lenzi, C.A.R. Yednak, L.R. Evangelista, Non-Markovian diffusion and the adsorption-desorption process. Phys. Rev. E 81, 011116 (2010)

    Article  Google Scholar 

  12. R. Kopelman, Fractal reaction kinetics. Science 241, 1620–1626 (1988)

    Article  Google Scholar 

  13. A.A. Tateishi, H.V. Ribeiro, E.K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion. Front. Phys. 5, 52 (2017)

    Article  Google Scholar 

  14. K. Seki, M. Wojcik, M. Tachiya, Fractional reaction-diffusion equation. J. Chem. Phys. 119, 2165–2170 (2003)

    Article  Google Scholar 

  15. S.B. Yuste, L. Acedo, K. Lindenberg, Reaction front in an \(A+B \rightarrow C\) reaction-subdiffusion process. Phys. Rev. E 69, 036126 (2004)

    Article  Google Scholar 

  16. T.A.M. Langlands, B.I. Henry, S.L. Wearne, Turing pattern formation with fractional diffusion and fractional reactions. J. Phys.: Condens. Matter 19, 065115 (2007)

    Google Scholar 

  17. S.D. Lawley, Anomalous reaction-diffusion equations for linear reactions. Phys. Rev. E 102, 032117 (2020)

    Article  MathSciNet  Google Scholar 

  18. S.D. Lawley, Subdiffusion-limited fractional reaction-subdiffusion equations with affine reactions: Solution, stochastic paths, and applications. Phys. Rev. E 102, 042125 (2020)

    Article  MathSciNet  Google Scholar 

  19. B.I. Henry, S.L. Wearne, Fractional reaction-diffusion. Phys. A 276, 448–455 (2000)

    Article  MathSciNet  Google Scholar 

  20. V.V. Gafiychuk, B.Y. Datsko, Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems. Phys. Rev. E 75, 055201 (2007)

    Article  Google Scholar 

  21. E.K. Lenzi, M.A.F. Santos, D.S. Vieira, R.S. Zola, H.V. Ribeiro, Solutions for a sorption process governed by a fractional diffusion equation. Physica A 443, 32–41 (2016)

    Google Scholar 

  22. L. Xicheng, X. Mingyu, A model for reversible reaction in a subdiffusive regime. J. Math. Phys. 50, 102708 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. T.A.M. Langlands, B.I. Henry, S.L. Wearne, Anomalous subdiffusion with multispecies linear reaction dynamics. Phys. Rev. E 77, 021111 (2008)

    Article  MathSciNet  Google Scholar 

  24. B.I. Henry, T.A.M. Langlands, S.L. Wearne, Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E 74, 031116 (2006)

    Article  MathSciNet  Google Scholar 

  25. T.A.M. Langlands, B.I. Henry, Fractional chemotaxis diffusion equations. Phys. Rev. E 81, 051102 (2010)

    Article  MathSciNet  Google Scholar 

  26. M.A.F. Santos, M.K. Lenzi, E.K. Lenzi, Anomalous diffusion with an irreversible linear reaction and sorption-desorption process. Adv. Math. Phys. 6361598 (2017)

    Google Scholar 

  27. E.P. Ipiña, S.P. Dawson, The effect of reactions on the formation and readout of the gradient of Bicoid. Phys. Biol. 14, 016002 (2017)

    Article  Google Scholar 

  28. M. Kang, E. DiBenedetto, A. Kenworthy, Proposed correction to Feder’s anomalous diffusion FRAP equations. Biophys. J. 100, 791–792 (2011)

    Google Scholar 

  29. S. B. Yuste, E. Abad, K. Lindenberg, A reaction-subdiffusion model of fluorescence recovery after photobleaching (FRAP). J. Stat. Mech. Theor. Exp. P11014 (2014)

    Google Scholar 

  30. J. Wu, Y. Fang, V.I. Zarnitsyna, T.P. Tolentino, M.L. Dustin, C. Zhu, A coupled diffusion-kinetics model for analysis of contact-area FRAP experiment. Biophys. J. 95, 910–919 (2008)

    Google Scholar 

  31. E.K. Lenzi, M.K. Lenzi, R.S. Zola, L.R. Evangelista, Solutions for a hyperbolic diffusion equation with linear reaction terms. J. Stat. Mech.: Theor. Exp. 113205 (2020)

    Google Scholar 

  32. L.H. Aller, S. Chapman, Diffusion in the sun. Astrophys. J. 132, 461–472 (1960)

    Article  Google Scholar 

  33. Y. Wang, C. Li, G.J. Pielak, Effects of proteins on protein diffusion. J. Am. Chem. Soc. 132, 9392–9397 (2010)

    Article  Google Scholar 

  34. L. Bachelier, Théorie de la Spéculation. Ann. Scientifiques de l’É.N.S 17, 21 (1900)

    Google Scholar 

  35. H. Singh, D. Kumar, D. Baleanu, Methods of Mathematical Modelling: Fractional Differential Equations (CRC Press, Boca Raton, 2019)

    Book  MATH  Google Scholar 

  36. A. Pekalski, K. Sznajd-Weron, Anomalous Diffusion: From Basics to Applications (Springer, Berlin, 2014)

    MATH  Google Scholar 

  37. S. Means, A.J. Smith, J. Shepherd, J. Shadid, J. Fowler, R.J.H. Wojcikiewicz, T. Mazel, G.D. Smith, B.S. Wilson, Reaction diffusion modeling of calcium dynamics with realistic ER geometry. Biophys. J. 91, 537–557 (2006)

    Article  Google Scholar 

  38. V. Méndez, D. Campos, F. Bartumeus, Stochastic Foundations in Movement Ecology: Anomalous Diffusion, Front Propagation and Random Searches (Springer, Heidelberg, 2013)

    MATH  Google Scholar 

  39. E.K. Lenzi, M.K. Lenzi, R.S. Zola, H.V. Ribeiro, F.C. Zola, L.R. Evangelista, G. Goncalves, Reaction on a solid surface supplied by an anomalous mass transfer source. Physica A 410, 399–406 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. D. ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  41. T.I. Marx, W.E. Snyder, A.D. St. John, C.E. Moeller, Diffusion of oxygen into a film of whole blood. J. Appl. Physiol. 15, 1123–1129 (1960)

    Google Scholar 

  42. J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)

    Article  Google Scholar 

  43. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion (R. T. Edwards, Philadelphia, 2005)

    Google Scholar 

  44. N.A. Manakova, O.V. Gavrilova, Numerical Study of the Process of Optimizing the Propagation of a Nerve Impulse in a Membrane for a Three-Component Model (2018 International Russian Automation Conference (RusAutoCon), 2018), pp. 1–5

    Google Scholar 

  45. J. Rinzel, D. Terman, Propagation phenomena in a bistable reaction-diffusion system. SIAM J. Appl. Math. 42, 1111–1137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  46. I. Szalai, P. De Kepper, Turing patterns, spatial bistability, and front instabilities in a reaction-diffusion system. J. Phys. Chem. A 108, 5315–5321 (2004)

    Article  Google Scholar 

  47. S.S. Riaz, D.S. Ray, Diffusion and mobility driven instabilities in a reaction-diffusion system: a review. Indian J. Phys. 81, 1177–1204 (2007)

    Google Scholar 

  48. M. Iida, H. Ninomiya, H. Yamamoto, A review on reaction-diffusion approximation. J. Elliptic Parabol. Equ. 4, 565–600 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Li, R. Chen, A.B. Farimani, Y.J. Zhang, Reaction diffusion system prediction based on convolutional neural network. Sci. Rep. 10, 3894 (2020)

    Article  Google Scholar 

  50. J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1979)

    MATH  Google Scholar 

  51. R. Rannacher, A. Sequeira, Advances in Mathematical Fluid Mechanics: Dedicated to Giovanni Paolo Galdi on the Occasion of his 60th Birthday (Springer, Heidelberg, 2010)

    Book  MATH  Google Scholar 

  52. D. Jou, J. Camacho, M. Grmela, On the nonequilibrium thermodynamics of non-Fickian diffusion. Macromolecules 24, 3597–3602 (1991)

    Article  Google Scholar 

  53. A. Sapora, M. Codegone, G. Barbero, L.R. Evangelista, Adsorption-desorption phenomena and diffusion of neutral particles in the hyperbolic regime. J. Phys. A 47, 015002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. P.F.C. Tilles, S.V. Petrovskii, On the consistency of the reaction-telegraph process within finite domains. J. Stat. Phys. 177, 569–587 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. T. Hillen, A. Swan, The diffusion limit of transport equations in biology in Mathematical Models and Methods for Living Systems: Levico Terme, Italy 2014, ed. L. Preziosi, M. Chaplain, A. Pugliese (Springer International Publishing, 2016)

    Google Scholar 

  56. E.E. Holmes, Are diffusion models too simple? A comparison with telegraph models of invasion. Am. Nat. 142, 779–795 (1993)

    Article  Google Scholar 

  57. A. Compte, R. Metzler, The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A 30, 7277–7289 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  58. W. Brackman, A chemical reaction with a memory effect. Nature 211, 818–820 (1966)

    Article  Google Scholar 

  59. L.R. Evangelista, E.K. Lenzi, Fractional Diffusion Equations and Anomalous Diffusion (Cambridge University Press, Cambridge, 2018)

    Book  MATH  Google Scholar 

  60. T. Abdeljawada, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 10, 1098–1107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  61. M.D. Ortigueira, J.T. Machado, A critical analysis of the Caputo-Fabrizio operator. Commun. Nonlinear Sci. 59, 608–611 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  62. A. Giusti, A comment on some new definitions of fractional derivative. Nonlinear Dyn. 93, 1757–1763 (2018)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Roberto Evangelista .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evangelista, L.R., Lenzi, E.K. (2023). Reaction-Diffusion Problems. In: An Introduction to Anomalous Diffusion and Relaxation. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-031-18150-4_7

Download citation

Publish with us

Policies and ethics