Skip to main content

Adsorption Phenomena and Anomalous Behavior

  • Chapter
  • First Online:
An Introduction to Anomalous Diffusion and Relaxation

Part of the book series: PoliTO Springer Series ((PTSS))

  • 522 Accesses

Abstract

This chapter deals with illustrative problems involving anomalous diffusion behavior in connection with adsorption phenomena at the interface between a solid and a fluid phase. The kinetic balance equations at the interface are of Langmuir’s type and their generalizations, which are mostly developed using memory kernels and also considering reversible and irreversible reactions. In these contexts, the emergence of anomalous behavior is found even when the diffusion equations governing the bulk behavior are not fractional. In these cases, the interfaces allow for physysorption as well as Chemisorption   by incorporating those kernels which are localized or not in time. For completeness, applications dealing with fractional diffusion equations or fractional kinetic equations are also handled to evidence the potentiality of this formalism to describe the interplay between anomalous relaxation methods and interfacial behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Barbero, L.R. Evangelista, E.K. Lenzi, Frequency dispersion in the fractional Langmuir approximation for the adsorption-desorption phenomena. Proc. R. Soc. A 476, 20190570 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Barbero, L.R. Evangelista, Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals (Taylor & Francis, London, 2006)

    Google Scholar 

  3. V.E. Tarasov, Caputo-Fabrizio operator in terms of integer derivatives: memory or distributed lag? Comput. Appl. Math. 38, 113 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. V.E. Tarasov, No nonlocality. No fractional derivative. Commun. Nonlinear Sci. 62, 157–163 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. V.E. Tarasov, Generalized memory: fractional calculus approach. Fractal Fract. 2, 23 (2018)

    Article  Google Scholar 

  6. G. Sales Teodoro, J.A. Tenreiro Machado, E. Capelas de Oliveira, A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 388, 195–208 (2019)

    Google Scholar 

  7. V.E. Tarasov, S.S. Tarasova, Fractional derivatives and integrals: what are they needed for? Mathematics 8, 164 (2020)

    Article  Google Scholar 

  8. R. Hilfer, H–function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems. Phys. Rev. E 65, 061510 (2002)

    Article  Google Scholar 

  9. E.C.F.A. Rosa, E.C. Oliveira, Relaxation equations: fractional models. J. Phys. Math. 6, 1000146 (2015)

    Google Scholar 

  10. K. Górska, A. Horzela, Ł. Bratek, G. Dattoli, K.A. Penson, The Havriliak-Negami relaxation and its relatives: the response, relaxation and probability density functions. J. Phys. A Math. Theor. 51, 135202 (2018)

    Google Scholar 

  11. K. Górska, A. Horzela, T.K. Pogány, Non-Debye relaxations: the characteristic exponent in the excess wings model. Commun. Nonlinear Sci. Numer. Simul. 103, 106006 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Górska, A. Horzela, K.A. Penson, Non-Debye relaxations: the ups and downs of the stretched exponential vs. Mittag-Leffler’s matchings. Fractal Fract. 5, 265 (2021)

    Google Scholar 

  13. K. Górska, A. Horzela, T.K. Pogány, Non-Debye relaxations: smeared time evolution, memory effects, and the Laplace exponents. Commun. Nonlinear Sci. Numer. Simul. 99, 105837 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Górska, A. Horzela, Non-Debye relaxations: two types of memories and their Stieltjes character. Mathematics 9, 477 (2021)

    Article  Google Scholar 

  15. A. Giusti, I. Colombaro, Prabhakar-like fractional viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 56, 138–143 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. A.L. Alexe-Ionescu, P. Zaccagnini, A. Scalia, A. Lamberti, E. Tresso, C.F. Pirri, G. Barbero, Frequency dependence of the phenomenological parameters describing adsorption processes in supercapacitors. Electrochim. Acta 316, 181–188 (2019)

    Article  Google Scholar 

  17. G. Barbero, L.R. Evangelista, Two-level system description for the adsorption phenomenon: the meaning of the adsorption energy. Phys. Lett. A 324, 224–226 (2004)

    Article  MATH  Google Scholar 

  18. M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)

    Article  Google Scholar 

  19. F. Mainardi, R. Gorenflo, Time-fractional derivatives in relaxation processes: a tutorial review. Fract. Calc. Appl. Anal. 10, 269–308 (2007). Astrophys. Space Sci. 282, 281–287 (2002)

    Google Scholar 

  20. R.K. Saxena, A.M. Mathai, H.J. Haubold, On fractional kinetic equations. Astrophys. Space Sci. 282, 281–287 (2002)

    Article  Google Scholar 

  21. R.K. Saxena, A.M. Mathai, H.J. Haubold, Unified fractional kinetic equation and a fractional diffusion equation. Astrophys. Space Sci. 290, 299–310 (2004)

    Article  Google Scholar 

  22. L.R. Evangelista, E.K. Lenzi, Fractional Diffusion Equations and Anomalous Diffusion (Cambridge University Press, Cambridge, 2018)

    Book  MATH  Google Scholar 

  23. J.L. de Paula, P.A. Santoro, R.S. Zola, E.K. Lenzi, L.R. Evangelista, F. Ciuchi, A. Mazzulla, N. Scaramuzza, Non-Debye relaxation in the dielectric response of nematic liquid crystals: surface and memory effects in the adsorption-desorption process of ionic impurities. Phys. Rev. E 86, 051705 (2012)

    Article  Google Scholar 

  24. F.W. Tavares, P.M. Ndiaye, E.K. Lenzi, L.R. Evangelista, H.V. Ribeiro, R.S. Zola, Anomalous diffusion and sorption-desorption process in complex fluid systems. Commun. Nonlinear Sci. 90, 105411 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129 (2002)

    Article  Google Scholar 

  26. I.M. Sokolov, Solutions of a class of non-Markovian Fokker-Planck equations. Phys. Rev. E 66, 041101 (2002)

    Article  MathSciNet  Google Scholar 

  27. E.K. Lenzi, C.A.R. Yednak, L.R. Evangelista, Non-Markovian diffusion and the adsorption-desorption process. Phys. Rev. E 81, 011116 (2010)

    Article  Google Scholar 

  28. T. Sandev, Z. Tomovski, J.L.A. Dubbeldam, A. Chechkin, Generalized diffusion-wave equation with memory kernel. J. Phys. A 52, 015201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)

    MathSciNet  MATH  Google Scholar 

  30. C. Cattaneo, Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  31. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Klafter, I.M. Sokolov, First Steps in Random Walks: From Tools to Applications (Oxford University Press, Oxford, 2011)

    Book  MATH  Google Scholar 

  33. R. Kutner, J. Masoliver, The continuous time rand walk, still trendy: fifty-year story, state of art and outlook. Eur. Phys. J B 90, 50 (2017)

    Article  Google Scholar 

  34. J. Masoliver, K. Lindenberg, G.H. Weiss, A continuous-time generalization of the persistent random walk. Phys. A 157, 891–898 (1989)

    Article  MathSciNet  Google Scholar 

  35. M.V. Recanello, E.K. Lenzi, A.F. Martins, Q. Li, R.S. Zola, Extended adsorbing surface reach and memory effects on the diffusive behavior of particles in confined systems. Int. J. Heat Mass Transfer 151, 119433 (2020)

    Article  Google Scholar 

  36. E.K. Lenzi, L.R. Evangelista, G. Barbero, F. Mantegazza, Anomalous diffusion and the adsorption-desorption process in anisotropic media. Europhys. Lett. 85, 28004 (2009)

    Article  Google Scholar 

  37. V.G. Guimarães, H.V. Ribeiro, Q. Li, L.R. Evangelista, E.K. Lenzi, R.S. Zola, Unusual diffusing regimes caused by different adsorbing surfaces. Soft Matter 11, 1658–1666 (2015)

    Article  Google Scholar 

  38. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, Volume 5: Inverse Laplace Transforms (Gordon and Breach, New York, 1992)

    Google Scholar 

  39. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  40. S.K. Ghosh, A.G. Cherstvy, D.S. Grebenkov, R. Metzler, Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments. New J. Phys. 18, 013027 (2016)

    Article  Google Scholar 

  41. A.S. Coquel, J.P. Jacob, M. Primet, A. Demarez, M. Dimiccoli, T. Julou, L. Moisan, A.B. Lindner, H. Berry, Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect. PLoS Comput. Biol. 9, e1003038 (2013)

    Article  Google Scholar 

  42. K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, A. Kusumi, Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys. J. 86, 4075–4093 (2004)

    Article  Google Scholar 

  43. A. Cao, R.J.H. van Raak, D.J. Broer, Light-regulated molecular diffusion in a liquid crystal network. Soft Matter 15, 4737–4742 (2019)

    Article  Google Scholar 

  44. G. Gerber, M. Bensouda, D.A. Weitz, P. Coussot, Self-limited accumulation of colloids in porous media. Phys. Rev. Lett. 123, 158005 (2019)

    Article  Google Scholar 

  45. C. Chipot, J. Comer, Subdiffusion in membrane permeation of small molecules. Sci. Rep. 6, 35913 (2016)

    Article  Google Scholar 

  46. Q. Berrod, S. Hanot, A. Guillermo, S. Mossa, S. Lyonnard, Water subdiffusion in membranes for fuel cells. Sci. Rep. 7, 8326 (2017)

    Article  Google Scholar 

  47. R.S. Zola, E.K. Lenzi, L.R. Evangelista, G. Barbero, Memory effect in the adsorption phenomena of neutral particles. Phys. Rev. E 75, 042601 (2007)

    Article  Google Scholar 

  48. I. Liascukiene, G. Amselem, D.Z. Gunes, C.N. Baroud, Capture of colloidal particles by a moving microfluidic bubble. Soft Matter 14, 992–1000 (2018)

    Article  Google Scholar 

  49. P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M.J. Zaworotko, Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013)

    Article  Google Scholar 

  50. B. Maximus, E. De Ley, A. De Meyere, H. Pauwels, Ion transport in SSFLCD’s. Ferroelectrics 121, 103–113 (1991)

    Article  Google Scholar 

  51. G. Barbero, L.R. Evangelista, Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals (Taylor and Francis, London, 2006)

    Google Scholar 

  52. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  53. R.S. Zola, F.C.M. Freire, E.K. Lenzi, L.R. Evangelista, G. Barbero, Kinetic equation with memory effect for adsorption-desorption phenomena. Chem. Phys. Lett. 438, 144–147 (2007)

    Article  Google Scholar 

  54. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, vol. I (McGraw-Hill, New York, 1953)

    Google Scholar 

  55. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, 2nd edn. (Pergamon Press, Oxford, 1984)

    Google Scholar 

  56. M. Levesque, O. Bénichou, B. Rotenberg, Molecular diffusion between walls with adsorption and desorption. J. Chem. Phys. 138, 034107 (2013)

    Article  Google Scholar 

  57. D. Voloschenko, O.D. Lavrentovich, Light-induced director-controlled microassembly of dye molecules from a liquid crystal matrix. J. Appl. Phys. 86, 4843–4846 (1999)

    Article  Google Scholar 

  58. O.V. Kuksenoka, S.V. Shiyanovskii, Surface control of dye adsorption in liquid crystals. Mol. Crys. Liq. Crys. 359, 107–118 (2001)

    Article  Google Scholar 

  59. P.G. de Gennes, Soft matter. Rev. Mod. Phys. 64, 645–647 (1992)

    Article  Google Scholar 

  60. S.J. de Carvalho, R. Metzler, A.G. Cherstvy, Critical adsorption of polyelectrolytes onto charged Janus nanospheres. Phys. Chem. Chem. Phys. 16, 15539–15550 (2014)

    Article  Google Scholar 

  61. A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces, 6th edn. (Wiley, New York, 1997)

    Google Scholar 

  62. G. Barbero, L.R. Evangelista, Adsorption phenomenon of neutral particles and a kinetic equation at the interface. Phys. Rev. E 70, 031605 (2004)

    Article  Google Scholar 

  63. D.K. Yang, S.T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, New York, 2014)

    Book  Google Scholar 

  64. R.S. Zola, H.K. Bisoyi, H. Wang, A.M. Urbas, T.J. Bunning, Q. Li, Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings. Adv. Mater. 31, 1806172 (2019)

    Article  Google Scholar 

  65. R.F. de Souza, E.K. Lenzi, L.R. Evangelista, A.F. Martins, R.S. Zola, Liquid crystal devices, selective light transmission, band-gap tuning. Opt. Laser Technol. 120, 105745 (2019)

    Google Scholar 

  66. D.J. Broer, G.N. Mol, J.A.M.M. van Haaren, J. Lub, Photo-induced diffusion in polymerizing chiral-nematic media. Adv. Mater. 11, 573–578 (1999)

    Article  Google Scholar 

  67. A.H. Gevorgyan, R.B. Alaverdyan, H. Gharagulyan, M.S. Rafayelyan, H. Grigoryan, Diffusion in liquid crystals of two cholesterics with different pitches. J. Nanophotonics 9, 1–11 (2015)

    Article  Google Scholar 

  68. J. Jiang, D.K. Yang, Chirality differentiation by diffusion in chiral nematic liquid crystals. Phys. Rev. Appl. 7, 014014 (2017)

    Article  Google Scholar 

  69. D. Frezzato, G.J. Moro, C. Zannoni, Molecular diffusion in liquid crystals and chiral discrimination. I. Theory. J. Chem. Phys. 122, 164904 (2005)

    Google Scholar 

  70. D. Frezzato, G.J. Moro, C. Zannoni, Molecular diffusion in liquid crystals and chiral discrimination. II. Model calculations. J. Chem. Phys. 125, 104903 (2006)

    Google Scholar 

  71. T.-H. Wang, M.-F. Liu, S.-J. Hwang, Optical sensing of organic vapour based on polymer cholesteric liquid crystal film. Liq. Cryst. (online) 1–8 (2020)

    Google Scholar 

  72. M. Fernandes, E.K. Lenzi, L.R. Evangelista, Q. Li, R.S. Zola, R.F. de Souza, Diffusion and adsorption-desorption phenomena in confined systems with periodically varying medium. Chem. Eng. Sci. 116386 (2021)

    Google Scholar 

  73. R.S. Zola, Q. Li, Stimuli-directed helical axis switching in chiral liquid crystal nanostructures, in Functional Organic and Hybrid Nanostructured Materials (Wiley, New York, 2018), pp. 307–357

    Google Scholar 

  74. Y. Wang, Q. Li, Light-driven chiral molecular switches or motors in liquid crystals. Adv. Mater. 24, 1926–1945 (2012)

    Article  Google Scholar 

  75. J. Fan, Y. Li, H.K. Bisoyi, R.S. Zola, D.K. Yang, T.J. Bunning, D.A. Weitz, Q. Li, Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets. Angew. Chem. Int. Ed. 54, 2160–2164 (2015)

    Article  Google Scholar 

  76. Y. Wang, Z.G. Zheng, H.K. Bisoyi, K.G. Gutierrez-Cuevas, L. Wang, R.S. Zola, Q. Li, Thermally reversible full color selective reflection in a self-organized helical superstructure enabled by a bent-core oligomesogen exhibiting a twist-bend nematic phase. Mater. Horiz. 5, 442–446 (2016)

    Article  Google Scholar 

  77. Z. Zheng, R.S. Zola, H.K. Bisoyi, L. Wang, Y. Li, T.J. Bunning, Q. Li, Controllable dynamic zigzag pattern formation in a soft helical superstructure. Adv. Mater. 29, 1701903 (2017)

    Article  Google Scholar 

  78. M. Kotono, F. Takahiro, U. Yasuhiro, S. Kenichi, I. Ryota, Y. Hidetoshi, S. Mihoko, M. Hideji, R. Ken, K. Akihiro, Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys. J. 86, 4075–4093 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Roberto Evangelista .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evangelista, L.R., Lenzi, E.K. (2023). Adsorption Phenomena and Anomalous Behavior. In: An Introduction to Anomalous Diffusion and Relaxation. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-031-18150-4_6

Download citation

Publish with us

Policies and ethics