Skip to main content

Part of the book series: PoliTO Springer Series ((PTSS))

  • 514 Accesses

Abstract

This chapter deals with the random walk problem and its connections with the diffusion processes. Its first part is dedicated to an elementary approach to the classical random walks or random flights problem. Then, a generalization of the random walk, starting from a nonlinear diffusion equation (or nonlinear Fokker-Planck equation), is investigated, creating the conditions to discuss the central limit theorem and a kind of its generalization. In practice, we deal with a generalization of the simplest random walk, that is, the one of a free particle walking a given distance in a positive or negative direction at each step of time, via a nonlinear Markov chain obtained from the porous media equation. Subsequently, the concepts of anomalous diffusion and of those random walks with space and time continuous, which are called continuous-time random walk, are reviewed, focusing some formal aspects of the anomalous dynamics and pointing towards recent extensions of these methods. It is shown that the continuous-time random walk can be formulated in order to obtain reaction-diffusion equations. These equations describe the evolution of several species undergoing anomalous diffusion, with reactions governed by linear mean-field equations. We discuss also a theory for the intermittent continuous-time random walk and Lévy walks, in which the particles are stochastically reset to a given position at the end of each step of renewal, with a given resetting rate. The link between the formalisms of normal and anomalous diffusion is discussed, motivating the application of the fractional calculus to the whole approach on which the book is based.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Pearson, The problem of the random walk. Nature 72, 294 (1905)

    Article  MATH  Google Scholar 

  2. L. Rayleigh, The problem of the random walk. Nature 72, 318 (1905)

    Article  MATH  Google Scholar 

  3. K. Pearson, The problem of the random walk. Nature 72, 342 (1905)

    Article  MATH  Google Scholar 

  4. S. Chandrasekhar, Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Reif, Fundamentals of Statistics and Thermal Physics (McGraw-Hill, New York, 1965)

    Google Scholar 

  6. L.E. Reichl, A Modern Course in Statistical Physics (Wiley, New York, 1998), p.198

    MATH  Google Scholar 

  7. C.W. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences (Springer, New York, 1996)

    Google Scholar 

  8. H. Risken, The Fokker-Planck Equation (Springer, New York, 1984)

    Book  MATH  Google Scholar 

  9. R. Durrett, Probability: Theory and Examples (Cambridge University Press, New York, 2010)

    Book  MATH  Google Scholar 

  10. B.V. Gnedenko, A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables (Addison-Wesley, Cambridge, 1967)

    Google Scholar 

  11. J.R. Blum, H. Chernoff, M. Rosenblatt, H. Teicher, Central limit theorems for interchangeable processes. Canad. J. Math. 10, 222–229 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  12. P.A. Nze, P. Doukhan, Weak dependence: models and applications to econometrics. Economet. Theor. 20, 995–1045 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Umarov, C. Tsallis, M. Gell-Mann, S. Steinberg, Generalization of symmetric \(\alpha \)-stable Lévy distributions for \(q>1\). J. Math. Phys. 51, 033502 (2010)

    Google Scholar 

  14. S. Umarov, C. Tsallis, S. Steinberg, On a \(q\)-central limit theorem consistent with nonextensive statistical mechanics. Milan J. Math. 76, 307–328 (2008)

    Google Scholar 

  15. S. Umarov, C. Tsallis, The limit distribution in the \(q\)-CLT for \(q\ge 1\) is unique and can not have a compact support. J. Phys. A 49, 415204 (2016)

    Google Scholar 

  16. H.J. Hilhorst, Note on a \(q\)-modified central limit theorem. J. Stat. Mech. P10023 (2010)

    Google Scholar 

  17. M. Jauregui, C. Tsallis, \(q\)-generalization of the inverse Fourier transform. Phys. Lett. A 375, 2085–2088 (2011)

    Google Scholar 

  18. M. Jauregui, C. Tsallis, E.M.F. Curado, \(q\)-moments remove the degeneracy associated with the inversion of the \(q\)-Fourier transform. J. Stat. Mech. P10016 (2011)

    Google Scholar 

  19. C. Tsallis, Possible generalization of the Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (Springer, New York, 2009)

    MATH  Google Scholar 

  21. U. Tirnakli, C. Beck, C. Tsallis, Central limit behavior of deterministic dynamical systems. Phys. Rev. E 75, 040106 (R) (2007)

    Google Scholar 

  22. A. Pluchino, A. Rapisarda, C. Tsallis, Nonergodicity and central-limit behavior for long-range Hamiltonians. Europhys. Lett. 80, 26002 (2007)

    Article  MathSciNet  Google Scholar 

  23. L.J.L. Cirto, V.R.V. Assis, C. Tsallis, Influence of the interaction range on the thermostatistics of a classical many-body system. Phys. A 393, 286–296 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Christodoulidi, C. Tsallis, T. Bountis, Fermi-Pasta-Ulam model with long-range interactions: dynamics and thermostatistics. Europhys. Lett. 108, 40006 (2014)

    Article  Google Scholar 

  25. R.S. Mendes, E.K. Lenzi, L.C. Malacarne, S. Picoli, M. Jauregui, Random walks associated with nonlinear Fokker-Planck equation. Entropy 19, 155 (2017)

    Article  MathSciNet  Google Scholar 

  26. L.F. Richardson, Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. 110, 709 (1926)

    Google Scholar 

  27. A.A. Dubkov, B. Spagnolo, V.V. Uchaikin, Lévy flight superdiffusion: an introduction. Int. J. Bifurcat. Chaos 18, 2649–2672 (2008)

    Article  MATH  Google Scholar 

  28. M.F. Shlesinger, G.M. Zaslavsky, U. Frisch, Lévy Flights and Related Topics in Physics. Lecture Notes in Physics (Springer, Berlin, 1994)

    Google Scholar 

  29. R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. E.K. Lenzi, R.S. Mendes, J.S. Andrade Jr., L.R. da Silva, L.S. Lucena, N-dimensional fractional diffusion equation and Green’s function approach: spatially dependent diffusion coefficient and external force. Phys. Rev. E 71, 052101 (2005)

    Article  Google Scholar 

  31. T. Srokowski, Non-Markovian Lévy diffusion in nonhomogeneous media. Phys. Rev. E 75, 051105 (2007)

    Article  Google Scholar 

  32. H. Spohn, Surface dynamics below the roughening transition. J. Phys. I France 3, 69–81 (1993)

    Article  Google Scholar 

  33. M. Muskat, The Flow of Homogeneous Fluids Through Porous Media (McGraw-Hill, New York, 1937)

    MATH  Google Scholar 

  34. P.Y. Polunarinova-Kochina, Theory of Ground Water Movement (Princeton University Press, Princeton, 1962)

    Google Scholar 

  35. J. Buckmaster, Viscous sheets advancing over dry beds. J. Fluid Mech. 81, 735–756 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. E.W. Larsen, G.C. Pomraning, Asymptotic analysis of nonlinear Marshak waves. SIAM J. Appl. Math. 39, 201–212 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. W.L. Kath, Waiting and propagating fronts in nonlinear diffusion. Physica D 12, 375–381 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. A.R. Plastino, A. Plastino, Non-extensive statistical mechanics and generalized Fokker-Planck equation. Physica A 222, 347–354 (1995)

    Article  MathSciNet  Google Scholar 

  39. H. Shiino, Free energies based on generalized entropies and \({H}\)-theorems for nonlinear Fokker-Planck equations. J. Math. Phys. 42, 2540–2553 (2001)

    Google Scholar 

  40. L. Borland, Option pricing formulas based on a non-Gaussian stock price model. Phys. Rev. Lett. 89, 098701 (2002)

    Article  Google Scholar 

  41. T.D. Frank, Nonlinear Fokker-Planck Equations: Fundamentals and Applications (Springer, New York, 2005)

    MATH  Google Scholar 

  42. V. Schwammle, E.M.F. Curado, F.D. Nobre, A general nonlinear Fokker-Planck equation and its associated entropy. Eur. Phys. J. B 58, 159–165 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. V. Schwammle, F.D. Nobre, E.M.F. Curado, Consequences of the \({H}\) theorem from nonlinear Fokker-Planck equations. Phys. Rev. E 76, 041123 (2007)

    Google Scholar 

  44. G.A. Casas, F.D. Nobre, E.M.F. Curado, Entropy production and nonlinear Fokker-Planck equations. Phys. Rev. E 86, 061136 (2012)

    Article  Google Scholar 

  45. G.A. Mendes, M.S. Ribeiro, R.S. Mendes, E.K. Lenzi, F.D. Nobre, Nonlinear Kramers equation associated with nonextensive statistical mechanics. Phys. Rev. E 91, 052106 (2015

    Google Scholar 

  46. G. Sicuro, P. Rapcan, C. Tsallis, Nonlinear inhomogeneous Fokker-Planck equations: entropy and free-energy time evolution. Phys. Rev. E 94, 062117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. E.M.F. Curado, F.D. Nobre, Derivation of nonlinear Fokker-Planck equations by means of approximations to the master equation. Phys. Rev. E 67, 021107 (2003)

    Article  MathSciNet  Google Scholar 

  48. E.K. Lenzi, L.C. Malacarne, R.S. Mendes, Path integral approach to the nonextensive canonical density matrix. Physica A 278, 201–213 (2000)

    Article  MathSciNet  Google Scholar 

  49. A. Vidiella-Barranco, H. Moya-Cessa, Nonextensive approach to decoherence in quantum mechanics. Phys. Lett. A 279, 56–60 (2001)

    Article  MATH  Google Scholar 

  50. I.T. Pedron, R.S. Mendes, T.J. Buratta, L.C. Malacarne, E.K. Lenzi, Logarithmic diffusion and porous media equations: a unified description. Phys. Rev. E 72, 031106 (2005)

    Article  Google Scholar 

  51. C. Anteneodo, Non-extensive random walks. Physica A 358, 289 (2005)

    Article  MathSciNet  Google Scholar 

  52. E.W. Montroll, G.H. Weiss, Random walks on lattices, II. J. Math. Phys. 6, 167 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  53. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  54. R. Kutner, J. Masoliver, The continuous time rand walk, still trendy: fifty-year story, state of art and outlook. Eur. Phys. J. B 90, 50 (2017)

    Article  Google Scholar 

  55. L.R. Evangelista, E.K. Lenzi, Fractional Diffusion Equations and Anomalous Diffusion (Cambridge University Press, Cambridge, 2018)

    Book  MATH  Google Scholar 

  56. J. Klafter, A. Blumen, M.F. Shlesinger, Stochastic path to anomalous diffusion. Phys. Rev. A 35, 3081–3805 (1987)

    Article  MathSciNet  Google Scholar 

  57. H.V. Ribeiro, R. Rossato, A.K. Tateishi, E.K. Lenzi, R.S. Mendes, Continuous time random walk and different diffusive regimes. Acta Scientiarum Technol. 34, 201–206 (2012)

    Article  Google Scholar 

  58. E. Barkai, R. Metzler, J. Klafter, From continuous-time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 61, 132–138 (2000)

    Article  MathSciNet  Google Scholar 

  59. M. Du, Z. Wang, H. Zu, Measuring memory with the order of fractional derivative. Sci. Rep. 3, 3431 (2013)

    Article  Google Scholar 

  60. M.A. Zahran, On the derivation of fractional diffusion equation with an absorbent term and a linear external force. Appl. Math. Model. 33, 3088–3092 (2009)

    Article  Google Scholar 

  61. M.A. Zahran, E.M. Abulwafa, S.A. El-Wakil, The fractional Fokker-Planck equation on comb-like model. Physica A 323, 237–248 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  62. S.A. El-Wakil, M.A. Zahran, E.M. Abulwafa, Fractional (space-time) diffusion equation on comb-like model. Chaos Solitons Fractals 20, 1113–1120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  63. D. Villamaina, A. Sarracino, G. Gradenigo, A. Puglisi, A. Vulpiani, On anomalous diffusion and the out of equilibrium response function in one-dimensional models. J. Stat. Mech. L01002 (2011)

    Google Scholar 

  64. R. Burioni, D. Cassi, G. Giusiano, S. Regina, Anomalous diffusion and Hall effect on comb lattices. Phys. Rev. E 67, 016116 (2003)

    Article  Google Scholar 

  65. L.R. da Silva, A.A. Tateishi, M.K. Lenzi, E.K. Lenzi, P.C. da Silva, Green function for a non-Markovian Fokker-Planck equation: comb model and anomalous diffusion. Braz. J. Phys. 39, 483–487 (2009)

    Article  Google Scholar 

  66. A. Iomin, Subdiffusion on a fractal comb. Phys. Rev. E 83, 052106 (2011)

    Article  Google Scholar 

  67. E. Baskin, A. Iomin, Superdiffusion on a comb structure. Phys. Rev. Lett. 93, 120603 (2004)

    Article  Google Scholar 

  68. A.A. Tateishi, E.K. Lenzi, H.V. Ribeiro, L.R. Evangelista, R.S. Mendes, L.R. da Silva, Solutions for a diffusion equation with a backbone term. J. Stat. Mech. P02022 (2011)

    Google Scholar 

  69. R. Metzler, T.F. Nonnenmacher, space-and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation. Chem. Phys. 284, 67–90 (2002)

    Article  Google Scholar 

  70. B.J. West, Fractional Calculus View of Complexity: Tomorrow’s Science (CRC Press, Boca Raton, 2016)

    Book  MATH  Google Scholar 

  71. T.A.M. Langlands, B.I. Henry, S.L. Wearne, Anomalous subdiffusion with multispecies linear reaction dynamics. Phys. Rev. E 77, 021111 (2008)

    Article  MathSciNet  Google Scholar 

  72. B.I. Henry, T.A.M. Langlands, S.L. Wearne, Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E 74, 031116 (2006)

    Article  MathSciNet  Google Scholar 

  73. T. Zhou, P. Xu, W. Deng, Continuous-time random walks and Lévy walks with stochastic resetting. Phys. Rev. Res. 2, 013103 (2020)

    Article  Google Scholar 

  74. O. Bénichou, M. Coppey, M. Moreau, P.H. Suet, R. Voituriez, Optimal search strategies for hidden targets. Phys. Rev. Lett. 94, 198101 (2005)

    Article  Google Scholar 

  75. M.A. Lomholt, K. Tal, R. Metzler, K. Joseph, Lévy strategies in intermittent search processes are advantageous. Proc. Natl. Acad. Sci. U.S.A. 105, 11055–11059 (2008)

    Article  Google Scholar 

  76. C. Loverdo, O. Bénichou, M. Moreau, R. Voituriez, Robustness of optimal intermittent search strategies in one, two, and three dimensions. Phys. Rev. E 80, 031146 (2009)

    Article  MATH  Google Scholar 

  77. S. Eule, J.J. Metzger, Non-equilibrium steady states of stochastic processes with intermittent resetting. New J. Phys. 18, 033006 (2016)

    Article  MATH  Google Scholar 

  78. S.N. Majumdar, S. Sabhapandit, G. Schehr, Random walk with random resetting to the maximum position. Phys. Rev. E 92, 052126 (2015)

    Article  MathSciNet  Google Scholar 

  79. S.C. Manrubia, D.H. Zanette, Stochastic multiplicative processes with reset events. Phys. Rev. E 59, 4945 (1999)

    Article  Google Scholar 

  80. L. Kusmierz, S.N. Majumdar, S. Sabhapandit, G. Schehr, First order transition for the optimal search time of Lévy flights with resetting. Phys. Rev. Lett. 113, 220602 (2014)

    Article  Google Scholar 

  81. A.S. Bodrova, A.V. Chechkin, I.M. Sokolov, Nonrenewal resetting of scaled Brownian motion. Phys. Rev. E 100, 012119 (2019)

    Article  Google Scholar 

  82. A.S. Bodrova, A.V. Chechkin, I.M. Sokolov, Scaled Brownian motion with renewal resetting. Phys. Rev. E 100, 012120 (2019)

    Article  Google Scholar 

  83. V. Zaburdaev, S. Denisov, J. Klafter, Lévy walks. Rev. Mod. Phys. 87, 483–530 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Roberto Evangelista .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evangelista, L.R., Lenzi, E.K. (2023). Random Walks. In: An Introduction to Anomalous Diffusion and Relaxation. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-031-18150-4_3

Download citation

Publish with us

Policies and ethics