Skip to main content

Dielectric Behavior of Solid Polymer Electrolyte Films Formed by Double Hydrophilic Block Copolymers

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 279))

  • 264 Accesses

Abstract

Polymer electrolyte membranes (PEM) based on diblock copolymer poly(ethylene oxide)/polyacrylamide MePEO-b-PAAm (DBC), it’s partially hydrolyzed derivative MePEO-b-P(AAm-co-AAc) (DBChydr) and graft copolymer polyvinyl alcohol/polyacrylamide (PVA-g-PAAm), that form intramolecular polycomplexes, have been prepared by using solution casting technique. The ionic conductivity of PEM systems comprising mentioned copolymers in their pure form and in compositions with LiPF6 were measured at the ambient temperature and humidity. It was noticed that introduction of additional ionic groups -COOH in polyacrylamide block of DBC affected positively the conductive characteristics of the polymer membranes. The ionic conductivity of the membranes filled with LiPF6 increased with the growth of the Li-salt content. The reason for the application of DBCs and PVA-g-PAAm as possible ion-conducting membranes for Li-ion batteries, solar cells, and fuel cells are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Satiabrata S (2013) Additives for solid polymer electrolytes: the layered nanoparticles. Key Eng Mat 571: 23–56. https://doi.org/10.4028/www.scientific.net/KEM.571.27

  2. Ye YS, Rick J, Hvang BJ (2012) Water soluble polymers as proton exchange membranes for fuel cells. Polymers 4:913–963. https://doi.org/10.3390/polym4020913

    Article  Google Scholar 

  3. Quartarone E, Angioni S, Mustarelli P (2017) Polymer and composite membranes for proton-conducting, high-temperature fuel cells: a critical review. Materials 10:687–704. https://doi.org/10.3390/ma10070687

    Article  ADS  Google Scholar 

  4. Baroutaji A, Carton JG, Sajjia M, Olabi A-G (2016) Materials in PEM fuel cells. Ref Mod Mat Sci Mat Eng. https://doi.org/10.1016/B978-0-12-803581-8.04006-6

  5. Gupta S, Singh PK, Bhattacharya B (2018) Low-viscosity ionic liquid–doped solid polymer electrolytes: electrical, dielectric, and ion transport studies. High Perf Polym 30(8):986–992. https://doi.org/10.1177/0954008318778763

    Article  Google Scholar 

  6. Silvaa MM, Barrosa SC, Smitha MJ, MacCallumb JR (2006) Characterization of solid polymer electrolytes based on poly(trimethylenecsrbonate) and lithium tetraborate. Elecrochim Acta 49:1887–1891. https://doi.org/10.1016/j.electacta.2003.12.017

    Article  Google Scholar 

  7. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D:Appl Phys 41:223001. http://iopscience.iop.org/0022-3727/41/22/223001

  8. Hwang BJ, Joseph J, Zeng YZ, Lin CW, Cheng MY (2011) Analysis of states of water in poly (vinyl alcohol) based DMFC membranes using FTIR and DSC. J Membr Sci 369:88–95. https://doi.org/10.1016/j.memsci.2010.11.031

  9. Rhim JW, Park HB, Lee CS, Jun JH, Kim DS, Lee YM (2004) Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. J Membr Sci 238:143–151. https://doi.org/10.3390/nano9030397

    Article  Google Scholar 

  10. Lin CW, Huang YF, Kannan AM (2007) Semi-interpenetrating network based on cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride) as proton exchange fuel cell membranes. J Power Source 164:449–456. https://doi.org/10.1016/j.jpowsour.2006.10.081

    Article  ADS  Google Scholar 

  11. Lin CW, Huang YF, Kannan AM (2007) Cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride)-based semi-interpenetrating network as proton-conducting membranes for direct methanol fuel cells. J Power Sources 171:340–347. https://doi.org/10.1016/j.jpowsour.2007.06.145

    Article  Google Scholar 

  12. Qiao J, Hamaya T, Okada T (2005) New highly proton-conducting membrane poly(vinylpyrrolidone)(PVP) modified poly(vinyl alcohol)-2-acrylamido-2-methyl-1-propanesulfonic acid (PVA-PAMPS) for low temperature direct methanol fuel cells (DMFCs). Polymer 46(24):10809–10816. https://doi.org/10.1016/j.polymer.2005.09.007

    Article  Google Scholar 

  13. Borogula MS, Celik SU, Boz I, Bozkurt A (2013) Sulfonated poly(vinyl alcohol)/triazole blends as anhydrous proton conducting membranes for polymer electrolyte membrane fuel cells. Mater Res 28(11):1458–1465. https://doi.org/10.1557/jmr.2013.111

  14. Pivovar BS, Wang Y, Cussler EL (1999) Pervaporation membranes in direct methanol fuel cells. J Membr Sci 154:155–162. https://doi.org/10.1016/S0376-7388(98)00264-6

    Article  Google Scholar 

  15. Han HW, Liu W, Zhang J, Zhao XZ (2005) A hybride poly (ethylene oxide)poly(vinyliden fluoride)/TiO2 nanoparticle solid-state redox electrolyte for dye-sensitized nanocrystalline solar cells. Adv Fun Mat 15:1940–1944. https://doi.org/10.1002/adfm.200500159

    Article  Google Scholar 

  16. Wei D (2010) Dye sensitized solar cells. Int J Mol Sci 11:1103–1113. https://doi.org/10.3390/ijms11031103

    Article  Google Scholar 

  17. Ye YS, Rick JB, Hwang J (2012) Water soluble polymers as proton exchange membranes for fuel cells. Polymers 4:913–963. https://doi.org/10.3390/polym4020913

    Article  Google Scholar 

  18. Trigg EB, Gaines TW, Marochal M, Moed DE, Rannou P, Wagener KB, Stevens MJ, Karen I (2018) Self-assembled highly ordered acid layers in precisely sulfonated polyethylene produce efficient proton transport. Nature Mat 17:725–731. https://doi.org/10.1038/s41563-018-0097-2

    Article  ADS  Google Scholar 

  19. AnM E, Jannasch P (2006) Solid electrolyte membranes from semi-interpenetrating polymer networks of PEG-grafted polymethacrylates and poly(methyl methacrylate). Sol State Ion 177:573–579. https://doi.org/10.1016/j.ssi.2005.12.021

    Article  Google Scholar 

  20. Stephan AM (2006) Hybrid inorganic–organic polymer electrolytes. Eur Pol J 42:21–42. https://doi.org/10.1016/j.polymer.2006.05.069

    Article  Google Scholar 

  21. Gretzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42:1788–1798. https://doi.org/10.1021/ar900141y

    Article  Google Scholar 

  22. Gray FM (1997) Polymer electrolytes. The royal society of chemistry monographs. Cambrige, London

    Google Scholar 

  23. Appetecchi GB, Scaccia S, Passerini S (2000) Invetigation on the stability of the lithium polymer electrolyte interface. J Electrochem Soc 147:4448–4452. https://doi.org/10.1149/1.1394084

    Article  Google Scholar 

  24. Stergiopoulos T, Arabatzis IM, Katsaros G, Falaras P (2002) Binary polyethelene oxide/titania solid-state redox electrolite forhighly effecien nanocrystalline TiO2 photoelectrochemical cells. Nano Lett 2:1259–1261. https://doi.org/10.1021/nI02579u

    Article  ADS  Google Scholar 

  25. Nogueira AF, Durrant JR, DE Paoli M-A (2001) Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte. Adv Mater 13:826–830. https://doi.org/10.1002/1521-4095(200106)13:11<826::AID-ADMA826>3.0.CO;2-L

  26. Ogata N (2002) Ion-conducting polymers. Macromol Sci Part C Polym Rev 42:399–438. https://doi.org/10.1081/MC-120006454

    Article  Google Scholar 

  27. Uchiyama R, Kusagawa K, Hanai K, Imanishi N, Nirano A, Takeda Y (2009) Development of dry polymer electrolyte based on polyethelene oxide with co-bridging agent crosslinked by electron beam. Sol State Ion 180:205–216. https://doi.org/10.1016/j.ssi.2008.11.015

    Article  Google Scholar 

  28. Kang M-S, Kim JH, Won J, Kang YS (2006) Dye-sensitized solar cells based on crosslinked poly(ethelene glycol) electrolytes. J Photochem Photobiol A Chem 183:15–36. https://doi.org/10.1016/j.jphotochem.2006.02.013

    Article  Google Scholar 

  29. Zheltonozhskaya T, Permyakova N, Momot L. (2009) Intramolecular polycomplexes in block and graft copolymers. In: Hydrogen-bonded interpolymer complexes: formation, structure and application. Chapter 5. World Scientific Publ. Corp., New Jersey, London, Singapore, pp 85–154

    Google Scholar 

  30. Tsuchida E, Ohno H, Tsunemi K, Kobayashi N (1983) Lithium ionic conduction in poly (methacrilic acid)-poly(ethylene oxide) complex containing lithium perchlorate. Solid State Ionics 11:227–260. https://doi.org/10.1016/0167-2738(83)90028-0

    Article  Google Scholar 

  31. Jiang M, Li M, Xiang M, Zhou H (1999) Interpolymer complexation and miscibility enhancement by hydrogen bonding. Adv Polym Sci 146:121–217. https://doi.org/10.1007/3-540-49424-3_3

    Article  Google Scholar 

  32. Zheltonozhskaya T, Shembel E, Fedorchuk S, Kunitskaya L, Maksyta I, Pemyakova N, Gomza Y (2012) Nanostructured triblock copolymers with chemically complementary components and their ionic conductivity. J Res Upd Pol Sci 1(2):1–12. https://doi.org/10.6000/1929-5995.2012.01.02.4

  33. Kunitskaya L, Zheltonozhskaya T, Aleinichenko V, Berkova S (2011) Diblock copolymers containig polyacrilamide and monomethoxy-poly(ethylene) oxide: bulk structure and micellization. Mater und Werkst 42(2):109–113. https://doi.org/10.1002/mawe.201100740

    Article  Google Scholar 

  34. Zheltonozhskaya T, Zagdanskaya N Demchenko O, Momot L, Permyakova N, Syromyatnikov V, Kunitskaya L (2004) Graft copolymers with chemically complementary components as a special class of high-molecular-weight compounds. Russ Chem Rev 73:811–829.https://doi.org/10.1070/RC2004v073n08ABEH000901

  35. Galperin D, Khalatur PG, Khokhlov AR (2009) Morphology of Nafion membranes: microscopic and mesoscopic modelling. In: Paddison SJ, Promislow KS (eds) Device and materials modelling in PEM fuel cells, vol 113. Springer, Heidelberg, pp 453–483. https://doi.org/10.1007/978-0-387-78691-9_17

  36. Permyakova NM, Zheltonozhskaya TB, Shilov VV et al (2005) Structure of triblock-copolymers based on poly(ethylene oxide) and poly(acrylamide) with central blocks varying length. Theor Exper Chem 41:382–389. https://doi.org/10.1007/s11237-006-0007-6

    Article  Google Scholar 

  37. Baron MH, Fillaux F (1985) Vibrational spectra and structure of N-methylacetamide in some solid complexes with neutral salts. Can J Chem 63:1473–1479. https://doi.org/10.1080/15421400802463092

    Article  Google Scholar 

  38. Bruce PG (1995) Solid state electrochemistry. Cambridge University Press, Cambridge, 344 pp. https://doi.org/10.1002/adma.19960080417

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Kunitskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kunitskaya, L., Zheltonozhskaya, T., Nesin, S., Klepko, V., Minenko, N. (2023). Dielectric Behavior of Solid Polymer Electrolyte Films Formed by Double Hydrophilic Block Copolymers. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-031-18096-5_28

Download citation

Publish with us

Policies and ethics