Skip to main content

Innovative Biofilms Mediated as Empiricist of Bioremediation for Sustainable Development

  • Chapter
  • First Online:
Microbial Bioremediation

Abstract

Extracellular polymeric substances bind to abiotic or biological surfaces to form biofilms, which can be unicellular or multicellular. Since toxic pollutants become more prevalent in the surroundings, comprehensive environmental rejuvenation initiatives have become possible. Environmentally safe and economically viable, biological processes are preferred over chemical treatment. Bioremediation is a burgeoning technology that has the potency to tidy up pollutants in a more efficacious manner than ever before. Diverse microorganisms can form biofilms, which could provide a suitable microenvironment for efficacious bioremediation processes. The biofilm environment’s relatively high cell density and stress-resistance properties allow the effectual metabolism of a variety of toxic and hydrophobic compounds. As a promising technique for bioremediation of environmental pollutants, bacterial biofilms have the potency to be quite relevant. The optimization of bioremediation processes in field conditions requires a thorough understanding of biofilm structure, dynamics and microbiome interactions. Utilizing biofilms for environmental remediation of pollutants is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avnir, D., Coradin, T., Lev, O., & Livage, J. (2006). Recent bio-applications of sol-gel materials. Journal of Materials Chemistry, 16, 1013–1030.

    Article  CAS  Google Scholar 

  • Buchholz, K., Kasche, V., & Bornscheuer, U. T. (2012). Biocatalysts and enzyme technology (2nd ed.). Wiley-VCH.

    Google Scholar 

  • Busalmen, J., Vazquez, M., & De Sanchez, S. (2002). New evidences on the catalase mechanism of microbial corrosion. Electrochimica Acta, 47, 1857–1865.

    Article  CAS  Google Scholar 

  • Cogan, N. G., Cortez, R., & Fauci, L. (2005). Modelling physiological resistance in bacterial biofilms. Bulletin of Mathematical Biology, 67, 831–853.

    Article  CAS  Google Scholar 

  • Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745.

    Article  CAS  Google Scholar 

  • Dasgupta, D., Kumar, A., Mukhoupadhya, B., & Sengupta, T. K. (2015). Isolation of phenazine 1,6 dicarboxylic acid from Pseudomonas aeruginosa strain HRW-1S3 and its role in biofilm mediated crude oil degradation and cytotoxicity against bacterial and cancer cells. Applied Microbiology and Biotechnology, 99, 8653–8665.

    Article  CAS  Google Scholar 

  • Dash, H. R., & Das, S. (2012). Bioremediation of mercury and importance of bacterial mer genes. International Biodeterioration and Biodegradation, 75, 207–213.

    Article  CAS  Google Scholar 

  • Dash, H. R., Mangwani, N., Chakraborty, J., Kumari, S., & Das, S. (2013). Marine bacteria: Potential candidates for enhanced bioremediation. Applied Microbiology and Biotechnology, 97, 561–571.

    Article  CAS  Google Scholar 

  • de Carvalho, C. C. C. R. (2018). Marine biofilms: A successful microbial strategy with economic implications. Frontiers in Marine Science, 5, 126.

    Article  Google Scholar 

  • Ferris, F. G., Schultze, S., Witten, T. C., et al. (1989). Metal interactions with microbial biofilms in acidic and neutral pH environments. Applied and Environmental Microbiology, 55, 1249–1257.

    Article  CAS  Google Scholar 

  • Flemming, H. C., Neu, T. R., & Wozniak, D. J. (2007). The EPS matrix: The “house of biofilm cells”. Journal of Bacteriology, 189, 7945–7947.

    Article  CAS  Google Scholar 

  • Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology, 14, 563.

    Article  CAS  Google Scholar 

  • Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8, 623–633.

    Article  CAS  Google Scholar 

  • Gieg, L. M., Fowler, S. J., & Berdugo-Clavijo, C. (2014). Syntrophic biodegradation of hydrocarbon contaminants. Current Opinion in Biotechnology, 27, 21–29.

    Article  CAS  Google Scholar 

  • Gloag, E. S., Turnbull, L., Huang, A., Vallotton, P., Wang, H., Nolan, L. M., et al. (2013). Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proceedings of the National Academy of Sciences of the United States of America, 110, 11541–11546.

    Article  CAS  Google Scholar 

  • Godfrin, M. P., Sihlabela, M., Bose, A., & Tripathi, A. (2018). Behaviour of marine bacteria in clean environment and oil spill conditions. Langmuir, 34, 9047–9053.

    Article  CAS  Google Scholar 

  • Grun, A. Y., App, C. B., Breidenbach, A., Meier, J., Metreveli, G., Schaumann, G. E., et al. (2018). Effects of low dose silver nanoparticle treatment on the structure and community composition of bacterial fresh water biofilms. PLoS One, 13, e0199132.

    Article  Google Scholar 

  • Halan, B., Buehler, K., & Schimd, A. (2012). Biofilms as living catalysts in continuous chemical syntheses. Trends in Biotechnology, 30, 453–465.

    Article  CAS  Google Scholar 

  • Huang, H., Peng, C., Peng, P., Lin, Y., Zhang, X., & Ren, H. (2019). Towards the biofilm characterization and regulation in biological wastewater treatment. Applied Microbiology and Biotechnology, 103, 1115–1129.

    Article  CAS  Google Scholar 

  • Irankhah, S., Abdi Ali, A., Mallavarapu, M., Soudi, M. R., Subashchandrabose, S., Gharavi, S., et al. (2019). Ecological role of Acinetobacter calcoaceticus GSN3 in natural biofilm formation and its advantages in bioremediation. Biofouling, 35, 377–391.

    Article  CAS  Google Scholar 

  • Jung, J. H., Choi, N. Y., & Lee, S. Y. (2013). Biofilm formation and exopolysaccharide (EPS) production by Cronobacter sakazakii depending on environmental conditions. Food Microbiology, 34, 70–78.

    Article  CAS  Google Scholar 

  • Kargi, F., & Eker, S. (2005). Removal of 2,4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. Process Biochemistry, 40, 2105–2111.

    Article  CAS  Google Scholar 

  • Kumar, K., Devi, S. S., Krishnamurthi, K., Gampawar, S., Mishra, N., Pandya, G. H., & Chakrabarti, T. (2006). Decolorisation, biodegradation and detoxification of benzidine based azo dye. Bioresource Technology, 97, 407–413.

    Article  CAS  Google Scholar 

  • Latasa, C., Solano, C., Penades, J. R., & Lasa, I. (2006). Biofilm associated proteins. C.R. O Biologico, 329, 849–857.

    CAS  Google Scholar 

  • Leck, C., & Bigg, E. K. (2005). Biogenic particles in the surface microlayer and overlaying atmosphere in the Central Arctic Ocean during summer. Tellus B, 57, 305–316.

    Article  Google Scholar 

  • Lendenmann, U., & Spain, J. C. (1998). Simultaneous biodegradation of 2,4-dinitrotoluene and 2,6-dinitrotoluene in an aerobic fluidized-bed biofilm reactor. Environmental Science & Technology, 32, 82–87.

    Article  CAS  Google Scholar 

  • Li, Y. H., & Tian, X. (2012). Quorum sensing and bacterial social interactions in biofilms. Sensors, 12, 2519–2538.

    Article  CAS  Google Scholar 

  • Mah, T. F., & O'Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9, 34–39.

    Article  CAS  Google Scholar 

  • Mangwani, N., Dash, H. R., Chauhan, A., & Das, S. (2012). Bacterial quorum sensing: Functional features and potential applications in biotechnology. Journal of Molecular Microbiology and Biotechnology, 22, 215–227.

    CAS  Google Scholar 

  • Matsuyama, T., & Nakagawa, Y. (1996). Surface-active exolipids: Anaylsis of absolute chemical structures and biological functions. Journal of Microbiological Methods, 25, 165–175.

    Article  CAS  Google Scholar 

  • Molin, S., & Tolker-Nielsen, T. (2003). Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilization of the biofilm structure. Current Opinion in Biotechnology, 14, 255–261.

    Article  CAS  Google Scholar 

  • Mosharaf, M. K., Tanvir, M. Z. H., Haque, M. M., Haque, M. A., et al. (2018). Metal adapted bacteria isolated from waste waters produce biofilms by expressing proteinaceous curly fimbriae and cellulose nanofibres. Frontiers in Microbiology, 9, 1334.

    Article  CAS  Google Scholar 

  • Muyzer, G., & Stams, A. J. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6, 441–454.

    Article  CAS  Google Scholar 

  • Otzen, D., & Nielsen, P. H. (2008). We find them here, we find them there: Functional bacterial amyloid. Cellular and Molecular Life Sciences, 65, 910–927.

    Article  CAS  Google Scholar 

  • Pandey, J., Chauhan, A., & Jain, R. K. (2009). Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiology Reviews, 33, 324–337.

    Article  CAS  Google Scholar 

  • Parales, R. E., & Haddock, J. D. (2004). Biocatalytic degradation of pollutants. Current Opinion in Biotechnology, 15, 374–379.

    Article  CAS  Google Scholar 

  • Paul, D., Pandey, G., Pandey, J., & Jain, R. K. (2005). Accessing microbial diversity for bioremediation and environmental resortation. Trends in Biotechnology, 23, 135–142.

    Article  CAS  Google Scholar 

  • Pi, H., & Helmann, J. D. (2018). Genome wide characterization of the Fur regulatory network reveals a link between catechol degradation and bacillibactin metabolism in Bacillus subtilis. mBio, 9pii, e01451–e01418.

    Article  CAS  Google Scholar 

  • Pool, J. R., Kruse, N. A., & Vis, M. L. (2013). Assessment of mine drainage remediated streams using diatom assemblages and biofilm enzyme activities. Hydrobiologia, 709, 101–116.

    Article  CAS  Google Scholar 

  • Prasad, M. N. V., & Prasad, R. (2012). Nature’s cure for cleanup of contaminated environment – A review of bioremediation strategies. Reviews on Environmental Health, 27, 181–189.

    Article  CAS  Google Scholar 

  • Sand, W., & Gehrke, T. (2006). Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Research in Microbiology, 157, 49–56.

    Article  CAS  Google Scholar 

  • Seo, J. S., Keum, Y. S., & Li, Q. X. (2009). Bacterial degradation of aromatic compounds. International Journal of Environmental Research and Public Health, 6, 278–309.

    Article  CAS  Google Scholar 

  • Sfaelou, S., Papadimitriou, C. A., Manariotis, I. D., Rouse, J. D., Vakros, J., & Karapanagioti, H. K. (2016). Treatment of low strength municipal waste water containing phenanthrene using activated sludge and biofilm process. Desalination and Water Treatment, 57, 12047–12057.

    Article  CAS  Google Scholar 

  • Shukla, S. K., Mangwani, N., Rao, T. S., & Das, S. (2014). Biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons. In S. Das (Ed.), Microbial biodegradation and bioremediation (1st ed., pp. 203–232). Elsevier.

    Chapter  Google Scholar 

  • Shukla, S. K., & Rao, T. S. (2013b). Dispersal of Bap- mediated Staphylococcus aureus biofilm by proteinase K.J. Antibiotics, 66, 55–60.

    Article  Google Scholar 

  • Shukla, S. K., & Rao, T. S. (2013a). Effect of calcium ion on Staphylococcus aureus biofilm architecture: A confocal laser scanning microscopic study. Colloids and Surfaces B, 103, 448–454.

    Article  CAS  Google Scholar 

  • Singh, R., Paul, D., & Jain, R. K. (2006). Biofilms, implications in bioremediation. Trends in Microbiology, 14, 389–397.

    Article  CAS  Google Scholar 

  • Stoodley, L. H., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews. Microbiology, 2, 95–108.

    Article  Google Scholar 

  • Tetz, G. V., Artimenko, N. K., & Tetz, V. V. (2009). Effect of DNase and antibiotics on biofilm characteristics. Antimicrobial Agents and Chemotherapy, 53, 1204–1209.

    Article  CAS  Google Scholar 

  • Turky, Y., Mehri, L., Lajnef, R., Rejab, A. B., Khessairi, A., Cherif, H., et al. (2017). Biofilms in bioremediation and wastewater treatment: Characterization of bacterial community structure and diversity during seasons in municipal wastewater treatment process. Environmental Science and Pollution Research International, 24, 3519–3530.

    Article  Google Scholar 

  • Valls, M., & de Lorenzo, V. C. (2002). Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiology Reviews, 26, 327–338.

    Article  CAS  Google Scholar 

  • Walczak, M., Swiontek, B. M., Sionkowaska, A., Michalska, M., Jankiewicz, U., & Deja-Sikora, E. (2015). Biofilm formation on the surface of polylactide during its biodegradation in different environments. Colloids and Surfaces B: Biointerfaces, 1, 340–345.

    Article  Google Scholar 

  • Wingender, J., Neu, T., & Flemming, H. C. (1999). What are bacterial extracellular polymeric substances? In J. Wingender, T. Neu, & H. C. Flemming (Eds.), Microbial extracellular polymeric substances (pp. 1–19). Springer.

    Chapter  Google Scholar 

  • Wingender, J., Strathmann, M., Rode, A., Leis, A., & Flemming, H. C. (2001). Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods in Enzymology, 336, 302–314.

    Article  CAS  Google Scholar 

  • Wolfaardt, G. M. (1995). Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation. Applied and Environmental Microbiology, 61, 152–158.

    Article  CAS  Google Scholar 

  • Woodley, J. M. (2006). Microbial biocatalytic processes and their development. Advances in Applied Microbiology, 60, 1–15.

    Article  CAS  Google Scholar 

  • Yin, W., Wang, Y., Liu, L., & He, J. (2019). Biofilms: The microbial “protecting clothing” in extreme environments. International Journal of Molecular Sciences, 20, 3423.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manmeet Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, N., Kaur, M., Kaur, M., Sahota, P. (2023). Innovative Biofilms Mediated as Empiricist of Bioremediation for Sustainable Development. In: Bhat, R.A., Butnariu, M., Dar, G.H., Hakeem, K.R. (eds) Microbial Bioremediation. Springer, Cham. https://doi.org/10.1007/978-3-031-18017-0_7

Download citation

Publish with us

Policies and ethics