Skip to main content

Lightweight Transformer Backbone for Medical Object Detection

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13581)

Abstract

Lesion detection in digital breast tomosynthesis (DBT) is an important and a challenging problem characterized by a low prevalence of images containing tumors. Due to the label scarcity problem, large deep learning models and computationally intensive algorithms are likely to fail when applied to this task. In this paper, we present a practical yet lightweight backbone to improve the accuracy of tumor detection. Specifically, we propose a novel modification of visual transformer (ViT) on image feature patches to connect the feature patches of a tumor with healthy backgrounds of breast images and form a more robust backbone for tumor detection. To the best of our knowledge, our model is the first work of Transformer backbone object detection for medical imaging. Our experiments show that this model can considerably improve the accuracy of lesion detection and reduce the amount of labeled data required in typical ViT. We further show that with additional augmented tumor data, our model significantly outperforms the Faster R-CNN model and state-of-the-art SWIN transformer model.

Y. Zhang and H. Dong—Equal contribution.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6. IEEE (2017)

    Google Scholar 

  2. Buda, M., et al.: Data from the breast cancer screening-digital breast tomosynthesis (BCS-DBT). Data from The Cancer Imaging Archive (2020)

    Google Scholar 

  3. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  4. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3339–3348 (2018)

    Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  11. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    CrossRef  Google Scholar 

  12. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  13. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  14. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  15. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  16. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  17. Yang, R., Yu, Y.: Artificial convolutional neural network in object detection and semantic segmentation for medical imaging analysis. Front. Oncol. 11, 573 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 434 KB)

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Dong, H., Konz, N., Gu, H., Mazurowski, M.A. (2022). Lightweight Transformer Backbone for Medical Object Detection. In: Ali, S., van der Sommen, F., Papież, B.W., van Eijnatten, M., Jin, Y., Kolenbrander, I. (eds) Cancer Prevention Through Early Detection. CaPTion 2022. Lecture Notes in Computer Science, vol 13581. Springer, Cham. https://doi.org/10.1007/978-3-031-17979-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17979-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17978-5

  • Online ISBN: 978-3-031-17979-2

  • eBook Packages: Computer ScienceComputer Science (R0)