Skip to main content

Multi-scale Deformable Transformer for the Classification of Gastric Glands: The IMGL Dataset

  • Conference paper
  • First Online:
Cancer Prevention Through Early Detection (CaPTion 2022)

Abstract

Gastric cancer is one of the most common cancers and a leading cause of cancer-related death worldwide. Among the risk factors of gastric cancer, the gastric intestinal metaplasia (IM) has been found to increase the risk of gastric cancer and is considered as one of the precancerous lesions. Therefore, early detection of IM could allow risk stratification regarding the possibility of progression to cancer. To this end, accurate classification of gastric glands from the histological images plays an important role in the diagnostic confirmation of IM. To date, although many gland segmentation approaches have been proposed, no general model has been proposed for the identification of IM glands. Thus, in this paper, we propose a model for gastric glands’ classification. More specifically, we propose a multi-scale deformable transformer-based network for glands’ classification into normal and IM gastric glands. To evaluate the efficiency of the proposed methodology we created the IMGL dataset consisting of 1000 gland images, including both intestinal metaplasia and normal cases received from 20 Whole Slide Images (WSI). The results showed that the proposed approach achieves an F1 score equal to 0.94, showing great potential for the gastric glands’ classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO: Cancerm. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 24 July 2022

  2. Waddingham, W., et al.: Recent advances in the detection and management of early gastric cancer and its precursors. Frontline Gastroenterol. 12(4), 322–331 (2021)

    Article  Google Scholar 

  3. Jencks, D.S., Adam, J.D., Borum, M.L., Koh, J.M., Stephen, S., Doman, D.B.: Overview of current concepts in gastric intestinal metaplasia and gastric cancer. Gastroenterol. Hepatol. 14(2), 92 (2018)

    Google Scholar 

  4. Busuttil, R.A., Boussioutas, A.: Intestinal metaplasia: a premalignant lesion involved in gastric carcinogenesis. J. Gastroenterol. Hepatol. 24(2), 193–201 (2009)

    Article  Google Scholar 

  5. Pellegrino, C., et al.: From Sidney to OLGA: an overview of atrophic gastritis. Acta Bio Medica Atenei Parmensis. 89(Suppl 8), 93 (2018)

    Google Scholar 

  6. Dixon, M.F., Genta, R.M., Yardley, J.H., Correa, P.: Classification and grading of gastritis: the updated Sydney system. Am. J. Surg. Pathol. 20(10), 1161–1181 (1996)

    Article  Google Scholar 

  7. Sirinukunwattana, K., et al.: Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 1(35), 489–502 (2017)

    Article  Google Scholar 

  8. Gonçalves, W.G., Dos Santos, M.H., Lobato, F.M., Ribeiro-dos-Santos, Â., de Araújo, G.S.: Deep learning in gastric tissue diseases: a systematic review. BMJ Open Gastroenterol. 7(1), e000371 (2020)

    Article  Google Scholar 

  9. Dimitropoulos, K., Barmpoutis, P., Koletsa, T., Kostopoulos, I., Grammalidis, N.: Automated detection and classification of nuclei in pax5 and H&E-stained tissue sections of follicular lymphoma. SIViP 11(1), 145–153 (2017)

    Article  Google Scholar 

  10. Korkmaz, S.A., Binol, H.: Classification of molecular structure images by using ANN, RF, LBP, HOG, and size reduction methods for early stomach cancer detection. J. Mol. Struct. 15(1156), 255–263 (2018)

    Article  Google Scholar 

  11. Barmpoutis, P., Kayhanian, H., Waddingham, W., Alexander, D.C., Jansen, M.: Three-dimensional tumour microenvironment reconstruction and tumour-immune interactions’ analysis. In: Proceedings of the IEEE DICTA, pp. 01–06 (2021)

    Google Scholar 

  12. England, J.R., Cheng, P.M.: Artificial intelligence for medical image analysis: a guide for authors and reviewers. Am. J. Roentgenol. 212(3), 513–519 (2019)

    Article  Google Scholar 

  13. Barmpoutis, P., et al.: Tertiary lymphoid structures (TLS) identification and density assessment on H&E-stained digital slides of lung cancer. PLoS ONE 16(9), e0256907 (2021)

    Article  Google Scholar 

  14. Barmpoutis, P., Dimitropoulos, K., Apostolidis, A., Grammalidis, N.: Multi-lead ECG signal analysis for myocardial infarction detection and localization through the mapping of Grassmannian and Euclidean features into a common Hilbert space. Biomed. Signal Process. Control 1(52), 111–119 (2019)

    Article  Google Scholar 

  15. Dimitropoulos, K., Barmpoutis, P., Zioga, C., Kamas, A., Patsiaoura, K., Grammalidis, N.: Grading of invasive breast carcinoma through Grassmannian VLAD encoding. PLoS ONE 12(9), e0185110 (2017)

    Article  Google Scholar 

  16. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.B.: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2018)

  17. Hatamizadeh, A., et al.: Unetr: Transformers for 3d medical image segmentation. In: Proceedings of the IEEE/CVF WACV 2022, pp. 574–584 (2022)

    Google Scholar 

  18. Dai, Y., Gao, Y., Liu, F.: Transmed: transformers advance multi-modal medical image classification. Diagnostics. 11(8), 1384 (2021)

    Article  Google Scholar 

  19. Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck transformers for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2021, pp. 16519–16529 (2021)

    Google Scholar 

  20. Gao, Z., et al.: Instance-based vision transformer for subtyping of papillary renal cell carcinoma in histopathological image. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 299–308. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_29

  21. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable transformers for end-to-end object detection. arXiv:2010.04159 (2020)

  22. Li, H., et al.: DT-MIL: Deformable transformer for multi-instance learning on histopathological image. In: Proceedings of the MICCAI 2021, pp. 206–216 (2021)

    Google Scholar 

  23. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. Adv. Neural Inf. Process. Syst. 2017, 30 (2017)

    Google Scholar 

  24. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE ICCV 2017, pp. 2980–2988 (2017)

    Google Scholar 

  25. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2011)

    Article  Google Scholar 

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28 (2015)

    Google Scholar 

  27. Liu, W., Liao, S., Hu, W., Liang, X., Chen, X.: Learning efficient single-stage pedestrian detectors by asymptotic localization fitting. In: Proceedings of the ECCV 2018, pp. 618–634 (2018)

    Google Scholar 

  28. Wang, X., Xiao, T., Jiang, Y., Shao, S., Sun, J., Shen, C.: Repulsion loss: Detecting pedestrians in a crowd. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018, pp. 7774–7783 (2018)

    Google Scholar 

  29. Liu, W, Liao, S., Ren, W., Hu, W., Yu, Y.: High-level semantic feature detection: a new perspective for pedestrian detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2019, pp. 5187–5196 (2019)

    Google Scholar 

Download references

Acknowledgments

The EPSRC and CRUK support this work through joint funding in grant number NS/A000069/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Barmpoutis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barmpoutis, P. et al. (2022). Multi-scale Deformable Transformer for the Classification of Gastric Glands: The IMGL Dataset. In: Ali, S., van der Sommen, F., Papież, B.W., van Eijnatten, M., Jin, Y., Kolenbrander, I. (eds) Cancer Prevention Through Early Detection. CaPTion 2022. Lecture Notes in Computer Science, vol 13581. Springer, Cham. https://doi.org/10.1007/978-3-031-17979-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17979-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17978-5

  • Online ISBN: 978-3-031-17979-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics