Skip to main content

3D-Morphomics, Morphological Features on CT Scans for Lung Nodule Malignancy Diagnosis

  • Conference paper
  • First Online:
Cancer Prevention Through Early Detection (CaPTion 2022)

Abstract

Pathologies systematically induce morphological changes, thus providing a major but yet insufficiently quantified source of observables for diagnosis. The study develops a predictive model of the pathological states based on morphological features (3D-morphomics) on Computed Tomography (CT) volumes. A complete workflow for mesh extraction and simplification of an organ’s surface is developed, and coupled with an automatic extraction of morphological features given by the distribution of mean curvature and mesh energy. An XGBoost supervised classifier is then trained and tested on the 3D-morphomics to predict the pathological states. This framework is applied to the prediction of the malignancy of lung’s nodules. On a subset of NLST database with malignancy confirmed biopsy, using 3D-morphomics only, the classification model of lung nodules into malignant vs. benign achieves 0.964 of AUC. Three other sets of classical features are trained and tested, (1) clinical relevant features gives an AUC of 0.58, (2) 111 radiomics gives an AUC of 0.976, (3) radiologist ground truth (GT) containing the nodule size, attenuation and spiculation qualitative annotations gives an AUC of 0.979. We also test the Brock model and obtain an AUC of 0.826. Combining 3D-morphomics and radiomics features achieves state-of-the-art results with an AUC of 0.978 where the 3D-morphomics have some of the highest predictive powers. As a validation on a public independent cohort, models are applied to the LIDC dataset, the 3D-morphomics achieves an AUC of 0.906 and the 3D-morphomics+radiomics achieves an AUC of 0.958, which ranks second in the challenge among deep models. It establishes the curvature distributions as efficient features for predicting lung nodule malignancy and a new method that can be applied directly to arbitrary computer aided diagnosis task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365(5), 395–409 (2011). https://doi.org/10.1056/NEJMoa1102873

  2. Lung nodule classification on LIDC-IDRI challenge (2022). https://paperswithcode.com/sota/lung-nodule-classification-on-lidc-idri

  3. Aerts, H.J., et al.: Corrigendum: decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5(1), 4006 (2014). https://doi.org/10.1038/ncomms5006

  4. Al-Shabi, M., Lan, B.L., Chan, W.Y., Ng, K.H., Tan, M.: Lung nodule classification using deep local-global networks. Int. J. Comput. Assist. Radiol. Surg. 14(10), 1815–1819 (2019)

    Article  Google Scholar 

  5. Al-Shabi, M., Lee, H.K., Tan, M.: Gated-dilated networks for lung nodule classification in CT scans. IEEE Access 7, 178827–178838 (2019). https://doi.org/10.1109/ACCESS.2019.2958663

    Article  Google Scholar 

  6. Al-Shabi, M., Shak, K., Tan, M.: ProCAN: progressive growing channel attentive non-local network for lung nodule classification. Pattern Recogn. 122, 108309 (2022). https://doi.org/10.1016/j.patcog.2021.108309

    Article  Google Scholar 

  7. Ardila, D., et al.: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25(6), 954–961 (2019). https://doi.org/10.1038/s41591-019-0447-

    Article  Google Scholar 

  8. Armato, S.G., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011). https://doi.org/10.1118/1.3528204

    Article  Google Scholar 

  9. Baudot, P., et al.: Development and validation of a machine learning based CADx designed to improve patient management in lung cancer screening programs. In: Proceedings of ECR 2022, Vienna, July 2022

    Google Scholar 

  10. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 785–794 (2016). https://doi.org/10.1145/2939672.2939785

  11. Chetan, M., Dowson, N., Price, N., Ather, S., Nicolson, A., Gleeson, F.: Developing an understanding of artificial intelligence lung nodule risk prediction using insights from the Brock model. Eur. Radiol. (2022). https://doi.org/10.1007/s00330-022-08635-4

  12. Choi, W., Nadeem, S., Alam, S.R., Deasy, J.O., Tannenbaum, A., Lu, W.: Reproducible and interpretable spiculation quantification for lung cancer screening. Comput. Methods Programs Biomed. 200, 105839 (2021). https://doi.org/10.1016/j.cmpb.2020.105839

  13. Erasmus, J.J., Connolly, J.E., McAdams, H.P., Roggli, V.L.: Solitary pulmonary nodules: part I. Morphologic evaluation for differentiation of benign and malignant lesions. RadioGraphics 20(1), 43–58 (2000). https://doi.org/10.1148/radiographics.20.1.g00ja0343

  14. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418–491 (1959). https://doi.org/10.2307/1993504

    Article  MathSciNet  MATH  Google Scholar 

  15. van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Can. Res. 77(21), 104–107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  Google Scholar 

  16. Huang, P., et al.: Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method. Lancet Digital Health 1(7), e353–e362 (2019). https://doi.org/10.1016/S2589-7500(19)30159-1

    Article  Google Scholar 

  17. Jemal, A., Fedewa, S.A.: Lung cancer screening with low-dose computed tomography in the United States-2010 to 2015. JAMA Oncol. 3(9), 1278–1281 (2017). https://doi.org/10.1001/jamaoncol.2016.6416

    Article  Google Scholar 

  18. Kubota, T., Jerebko, A.K., Dewan, M., Salganicoff, M., Krishnan, A.: Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models. Med. Image Anal. 15(1), 133–154 (2011). https://doi.org/10.1016/j.media.2010.08.005

    Article  Google Scholar 

  19. Leonardi, V.: Modélisation dynamique et suivi de tumeur dans le volume rénal. These de doctorat, Aix-Marseille, November 2014. http://www.theses.fr/2014AIXM4056

  20. Leonardi, V., Vidal, V., Daniel, M., Mari, J.-L.: Multiple reconstruction and dynamic modeling of 3D digital objects using a morphing approach. Vis. Comput. 31(5), 557–574 (2014). https://doi.org/10.1007/s00371-014-0978-6

    Article  Google Scholar 

  21. Al-Shabi, M., Lee, H.K., Tan, M.: Gated-dilated networks for lung nodule classification in CT scans. IEEE Access 7, 178827–178838 (2019)

    Article  Google Scholar 

  22. McKee, B.J., Regis, S.M., McKee, A.B., Flacke, S., Wald, C.: Performance of ACR lung-RADS in a clinical CT lung screening program. J. Am. Coll. Radiol. 12(3), 273–276 (2015). https://doi.org/10.1016/j.jacr.2014.08.004

    Article  Google Scholar 

  23. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05105-4_2

    Chapter  Google Scholar 

  24. Qiu, W.T.G.: Dense Graph Convolutional Neural Networks on 3D Meshes for 3D Object Segmentation and Classification. arXiv:2106.15778 (2021)

  25. Ranjbar, S., Ross Mitchell, J.: An introduction to radiomics: an evolving cornerstone of precision medicine. In: Biomedical Texture Analysis, pp. 223–245. The Elsevier and MICCAI Society Book Series. Academic Press (2017). https://doi.org/10.1016/B978-0-12-812133-7.00008-9

  26. Tammemagi, M.C., et al.: Participant selection for lung cancer screening by risk modelling (the Pan-Canadian Early Detection of Lung Cancer [PanCan] study): a single-arm, prospective study. Lancet Oncol. 18(11), 1523–1531 (2017). https://doi.org/10.1016/S1470-2045(17)30597-1

  27. Usman, M., Lee, B., Byon, S.S., Kim, S., Lee, B., Shin, Y.: Volumetric lung nodule segmentation using adaptive ROI with multi-view residual learning. Sci. Rep. 10(1), 12839 (2020). https://doi.org/10.1038/s41598-020-69817-y

    Article  Google Scholar 

  28. Wilson, R., Devaraj, A.: Radiomics of pulmonary nodules and lung cancer. Transl. Lung Cancer Res. 6(1), 86 (2017)

    Article  Google Scholar 

  29. Winter, A., Aberle, D.R., Hsu, W.: External validation and recalibration of the Brock model to predict probability of cancer in pulmonary nodules using NLST data. Thorax 74(6), 551–563 (2019). https://doi.org/10.1136/thoraxjnl-2018-212413

    Article  Google Scholar 

  30. Wu, B., Zhou, Z., Wang, J., Wang, Y.: Joint learning for pulmonary nodule segmentation, attributes and malignancy prediction. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1109–1113 (2018). https://doi.org/10.1109/ISBI.2018.8363765. ISSN 1945-8452

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Baudot .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1892 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Munoz, E. et al. (2022). 3D-Morphomics, Morphological Features on CT Scans for Lung Nodule Malignancy Diagnosis. In: Ali, S., van der Sommen, F., Papież, B.W., van Eijnatten, M., Jin, Y., Kolenbrander, I. (eds) Cancer Prevention Through Early Detection. CaPTion 2022. Lecture Notes in Computer Science, vol 13581. Springer, Cham. https://doi.org/10.1007/978-3-031-17979-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17979-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17978-5

  • Online ISBN: 978-3-031-17979-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics