Skip to main content

fMRI-S4: Learning Short- and Long-Range Dynamic fMRI Dependencies Using 1D Convolutions and State Space Models

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13596))

Included in the following conference series:

Abstract

Single-subject mapping of resting-state brain functional activity to non-imaging phenotypes is a major goal of neuroimaging. The large majority of learning approaches applied today rely either on static representations or on short-term temporal correlations. This is at odds with the nature of brain activity which is dynamic and exhibit both short- and long-range dependencies. Further, new sophisticated deep learning approaches have been developed and validated on single tasks/datasets. The application of these models for the study of a different targets typically require exhaustive hyperparameter search, model engineering and trial and error to obtain competitive results with simpler linear models. This in turn limit their adoption and hinder fair benchmarking in a rapidly developing area of research. To this end, we propose fMRI-S4; a versatile deep learning model for the classification of phenotypes and psychiatric disorders from the timecourses of resting-state functional magnetic resonance imaging scans. fMRI-S4 capture short- and long-range temporal dependencies in the signal using 1D convolutions and the recently introduced state-space models S4. The proposed architecture is lightweight, sample-efficient and robust across tasks/datasets. We validate fMRI-S4 on the tasks of diagnosing major depressive disorder (MDD), autism spectrum disorder (ASD) and sex classification on three multi-site rs-fMRI datasets. We show that fMRI-S4 can outperform existing methods on all three tasks and can be trained as a plug &play model without special hyperpararameter tuning for each setting (Code available at https://github.com/elgazzarr/fMRI-S4.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D.: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage 145, 137–165 (2017)

    Article  Google Scholar 

  2. Biewald, L.: Experiment tracking with weights and biases (2020). https://www.wandb.com/. Software available from wandb.com

  3. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)

    Article  Google Scholar 

  4. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  5. Dvornek, N.C., Ventola, P., Pelphrey, K.A., Duncan, J.S.: Identifying autism from resting-state fMRI using long short-term memory networks. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 362–370. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_42

    Chapter  Google Scholar 

  6. Eavani, H., Satterthwaite, T.D., Gur, R.E., Gur, R.C., Davatzikos, C.: Unsupervised learning of functional network dynamics in resting state fMRI. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 426–437. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38868-2_36

    Chapter  Google Scholar 

  7. El Gazzar, A., Cerliani, L., van Wingen, G., Thomas, R.M.: Simple 1-d convolutional networks for resting-state fMRI based classification in autism. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2019)

    Google Scholar 

  8. El-Gazzar, A., Quaak, M., Cerliani, L., Bloem, P., van Wingen, G., Mani Thomas, R.: A hybrid 3DCNN and 3DC-LSTM based model for 4d spatio-temporal fMRI data: an ABIDE autism classification study. In: Zhou, L., et al. (eds.) OR 2.0/MLCN -2019. LNCS, vol. 11796, pp. 95–102. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32695-1_11

    Chapter  Google Scholar 

  9. El-Gazzar, A., Thomas, R.M., van Wingen, G.: Dynamic adaptive spatio-temporal graph convolution for fMRI modelling. In: Abdulkadir, A., et al. (eds.) MLCN 2021. LNCS, vol. 13001, pp. 125–134. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87586-2_13

    Chapter  Google Scholar 

  10. Friston, K.J.: Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2(1–2), 56–78 (1994)

    Article  Google Scholar 

  11. Friston, K.J.: Functional and effective connectivity: a review. Brain Connect. 1(1), 13–36 (2011)

    Article  MathSciNet  Google Scholar 

  12. Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., Pohl, K.M.: Spatio-temporal graph convolution for resting-state fMRI analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 528–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_52

    Chapter  Google Scholar 

  13. Gu, A., Dao, T., Ermon, S., Rudra, A., Ré, C.: HiPPO: recurrent memory with optimal polynomial projections. Adv. Neural. Inf. Process. Syst. 33, 1474–1487 (2020)

    Google Scholar 

  14. Gu, A., Goel, K., RĂ©, C.: Efficiently modeling long sequences with structured state spaces. In: International Conference on Learning Representations (2022)

    Google Scholar 

  15. He, B.J.: Scale-free properties of the functional magnetic resonance imaging signal during rest and task. J. Neurosci. 31(39), 13786–13795 (2011)

    Article  Google Scholar 

  16. He, T., et al.: Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics. Neuroimage 206, 116276 (2020)

    Article  Google Scholar 

  17. Hutchinson, R.A., Niculescu, R.S., Keller, T.A., Rustandi, I., Mitchell, T.M.: Modeling fMRI data generated by overlapping cognitive processes with unknown onsets using hidden process models. Neuroimage 46(1), 87–104 (2009)

    Article  Google Scholar 

  18. Hutchison, R.M., et al.: Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013)

    Article  Google Scholar 

  19. Janoos, F., Machiraju, R., Singh, S., Morocz, I.A.: Spatio-temporal models of mental processes from fMRI. Neuroimage 57(2), 362–377 (2011)

    Article  Google Scholar 

  20. Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage 146, 1038–1049 (2017)

    Article  Google Scholar 

  21. Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  22. Malkiel, I., Rosenman, G., Wolf, L., Hendler, T.: Pre-training and fine-tuning transformers for fMRI prediction tasks. arXiv preprint arXiv:2112.05761 (2021)

  23. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. 87(24), 9868–9872 (1990)

    Google Scholar 

  24. Oord, A.v.d., et al.: WaveNet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

  25. Pan, V.: Fast approximate computations with Cauchy matrices and polynomials. Math. Comput. 86(308), 2799–2826 (2017)

    Article  MathSciNet  Google Scholar 

  26. Preti, M.G., Bolton, T.A., Van De Ville, D.: The dynamic functional connectome: state-of-the-art and perspectives. Neuroimage 160, 41–54 (2017)

    Article  Google Scholar 

  27. Sasha, R., Sidd, K.: The annotated s4. In: Blog Track at ICLR 2022 (2022). https://srush.github.io/annotated-s4/

  28. Schulz, M.A., et al.: Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets. Nat. Commun. 11(1), 1–15 (2020)

    Article  Google Scholar 

  29. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. Advances in Neural Information Processing Systems 28 (2015)

    Google Scholar 

  30. Sudlow, C., et al.: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12(3), e1001779 (2015)

    Article  Google Scholar 

  31. Suk, H.I., Wee, C.Y., Lee, S.W., Shen, D.: State-space model with deep learning for functional dynamics estimation in resting-state fMRI. Neuroimage 129, 292–307 (2016)

    Article  Google Scholar 

  32. Sundermann, B., Herr, D., Schwindt, W., Pfleiderer, B.: Multivariate classification of blood oxygen level-dependent fMRI data with diagnostic intention: a clinical perspective. Am. J. Neuroradiol. 35(5), 848–855 (2014)

    Article  Google Scholar 

  33. Tu, T., Paisley, J., Haufe, S., Sajda, P.: A state-space model for inferring effective connectivity of latent neural dynamics from simultaneous EEG/fMRI. Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  34. Tustin, A.: A method of analysing the behaviour of linear systems in terms of time series. J. Inst. Electr. Eng. Part IIA Autom. Regul. Servo Mech. 94(1), 130–142 (1947)

    Google Scholar 

  35. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  36. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585. IEEE (2017)

    Google Scholar 

  37. Williams, R.L., Lawrence, D.A., et al.: Linear State-Space Control Systems. Wiley, Hoboken (2007)

    Book  Google Scholar 

  38. Yan, C.G., et al.: Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl. Acad. Sci. 116(18), 9078–9083 (2019)

    Article  Google Scholar 

  39. Yan, W., et al.: Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site fMRI data. EBioMedicine 47, 543–552 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed El-Gazzar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Gazzar, A., Thomas, R.M., van Wingen, G. (2022). fMRI-S4: Learning Short- and Long-Range Dynamic fMRI Dependencies Using 1D Convolutions and State Space Models. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2022. Lecture Notes in Computer Science, vol 13596. Springer, Cham. https://doi.org/10.1007/978-3-031-17899-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17899-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17898-6

  • Online ISBN: 978-3-031-17899-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics