Skip to main content

Learning Interpretable Regularized Ordinal Models from 3D Mesh Data for Neurodegenerative Disease Staging

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2022)

Abstract

We extend the sparse, spatially piecewise-contiguous linear classification framework for mesh-based data to ordinal logistic regression. The algorithm is intended for use with subcortical shape and cortical thickness data where progressive clinical staging is available, as is generally the case in neurodegenerative diseases. We apply the tool to Parkinson’s and Alzheimer’s disease staging. The resulting biomarkers predict Hoehn-Yahr and cognitive impairment stages at competitive accuracy; the models remain parsimonious and outperform one-against-all models in terms of the Akaike and Bayesian information criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Braak, H., Del Tredici, K., Rüb, U., de Vos, R.A.I., Jansen Steur, E.N.H., Braak, E.: Staging of brain pathology related to sporadic parkinson’s disease. Neurobiology of Aging 24(2), 197–211 (2003)

    Google Scholar 

  2. de Pierrefeu, A.: Structured sparse principal components analysis with the tv-elastic net penalty. IEEE Trans. Med. Imaging 37(2), 396–407 (2018)

    Article  Google Scholar 

  3. Dohmatob, E.D., Gramfort,A., Thirion, B., Varoquaux, G.: Benchmarking solvers for tv-l1 least-squares and logistic regression in brain imaging. In: 2014 International Workshop on Pattern Recognition in Neuroimaging, pp. 1–4 (2014)

    Google Scholar 

  4. Doyle, O.M., et al.: Predicting progression of alzheimer’s disease using ordinal regression. PLoS ONE 9(8), e105542 (2014)

    Google Scholar 

  5. Garbarino, S., Lorenzi, M.: Modeling and inference of spatio-temporal protein dynamics across brain networks. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 57–69. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_5

    Chapter  Google Scholar 

  6. Guo, X., Tinaz, S., Dvornek, N.C.: Characterization of early stage parkinson’s disease from resting-state fmri data using a long short-term memory network. Front. Neuroimaging 1 (2022)

    Google Scholar 

  7. Gutman, B.A.: Empowering imaging biomarkers of Alzheimer’s disease. Neurobio. Aging 36, S69–S80 (2014)

    Article  Google Scholar 

  8. Hoehn, M.M., Yahr, M.D., et al.: Parkinsonism: onset, progression, and mortality. Neurology 50(2), 318–318 (1998)

    Article  Google Scholar 

  9. Jack Jr., C.R., et al.: Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9(1), 119–128 (2010)

    Google Scholar 

  10. Jin, D., et al.: Generalizable, reproducible, and neuroscientifically interpretable imaging biomarkers for Alzheimer’s disease. Adv. Sci. (Weinh) 7(14), 2198–3844 (2020)

    Google Scholar 

  11. Kurmukov, A., Zhao, Y., Mussabaeva, A., Gutman, B.: Constraining disease progression models using subject specific connectivity priors. In: Schirmer, M.D., Venkataraman, A., Rekik, I., Kim, M., Chung, A.W. (eds.) CNI 2019. LNCS, vol. 11848, pp. 106–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32391-2_11

    Chapter  Google Scholar 

  12. La Joie, R.: Prospective longitudinal atrophy in alzheimer &x2019;s disease correlates with the intensity and topography of baseline tau-pet. Sci. Trans. Med. 12(524), eaau5732 (2020)

    Google Scholar 

  13. Laansma, M.A., et al.: International multicenter analysis of brain structure across clinical stages of Parkinson’s disease. Mov. Disord. 36(11), 2583–2594 (2021)

    Article  Google Scholar 

  14. Marinescu, R.V., et al.: Dive: a spatiotemporal progression model of brain pathology in neurodegenerative disorders. Neuroimage 192, 166–177 (2019)

    Article  Google Scholar 

  15. McCullagh, P.: Regression models for ordinal data. J. Roy. Stat. Soc.: Ser. B (Methodol.) 42(2), 109–127 (1980)

    MathSciNet  MATH  Google Scholar 

  16. Nemmi, F., Sabatini, U., Rascol, O., Péran, P.: Parkinson’s disease and local atrophy in subcortical nuclei: insight from shape analysis. Neurobiol. Aging 36(1), 424–433 (2015)

    Article  Google Scholar 

  17. Nir, T.M., et al.: Alzheimer’s disease classification with novel microstructural metrics from diffusion-weighted MRI. In: Fuster, A., Ghosh, A., Kaden, E., Rathi, Y., Reisert, M. (eds.) Computational Diffusion MRI. MV, pp. 41–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28588-7_4

    Chapter  Google Scholar 

  18. Oxtoby, N.P.: Data-driven sequence of changes to anatomical brain connectivity in sporadic Alzheimer’s disease. Front. Neuro. 8, 580 (2017)

    Google Scholar 

  19. Shangran, Q., et al: Development and validation of an interpretable deep learning framework for alzheimer’s disease classification. Brain 143(6), 1920–1933 (2020)

    Google Scholar 

  20. Rennie, J.D.M., Srebro, N.: Loss functions for preference levels: Regression with discrete ordered labels. In: Proceedings of the IJCAI Multidisciplinary Workshop on Advances in Preference Handling, vol. 1. Citeseer (2005)

    Google Scholar 

  21. Roshchupkin, G.V., Gutman, B.A., et al.: Heritability of the shape of subcortical brain structures in the general population. Nat. Commun. 7, 13738 (2016)

    Google Scholar 

  22. Young, P.N.E., et al.: Imaging biomarkers in neurodegeneration: current and future practices. Alzheimers Res. Ther. 12(1), 49 (2020)

    Google Scholar 

  23. Zhao, Y., Kurmukov, A., Gutman, B.A.: Spatially adaptive morphometric knowledge transfer across neurodegenerative diseases. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 845–849 (2021)

    Google Scholar 

Download references

Acknowledgments

Work by BG and YZ was supported by the Alzheimer’s Association grant 2018-AARG-592081, Advanced Disconnectome Markers of Alzheimer’s Disease. ENIGMA-PD (YW, PT, EH, ML) is supported by NINDS award 1RO1NS107513-01A.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Boris Gutman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Y. et al. (2022). Learning Interpretable Regularized Ordinal Models from 3D Mesh Data for Neurodegenerative Disease Staging. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2022. Lecture Notes in Computer Science, vol 13596. Springer, Cham. https://doi.org/10.1007/978-3-031-17899-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17899-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17898-6

  • Online ISBN: 978-3-031-17899-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics