Abstract
In this paper we consider the Boothby-Wang construction over twist 1 stage 3 Bott orbifolds given in terms of the log pair \((S_\textbf{n},\Delta _\textbf{m})\). We give explicit constant scalar curvature (CSC) Sasaki metrics either directly from CSC Kähler orbifold metrics or by using the weighted extremal approach of Apostolov and Calderbank. The Sasaki 7-manifolds (orbifolds) are finitely covered by compact simply connected manifolds (orbifolds) with the rational homology of the 2-fold connected sum of \(S^2\times S^5\).
The authors were partially supported by grants from the Simons Foundation, CPB by (#519432), and CWT-F by (#422410).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Apostolov, V., Calderbank, D.M.J.: The CR geometry of weighted extremal Kähler and Sasaki metrics. Math. Ann. 379(3–4), 1047–1088 (2021). MR 4238260
Araujo, C., Castravet, A.-M., Cheltsov, I., Fujita, K., Kaloghiros, A.-S., Martinez-Garcia, J., Shramov, C., Süss, H., Viswanathan, N.: The Calabi problem for Fano threefolds (2021)
Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.W.: Hamiltonian 2-forms in Kähler geometry. III. Extremal metrics and stability. Invent. Math. 173(3), 547–601 (2008). MR 2425136 (2009m:32043)
Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.W.: Hamiltonian 2-forms in Kähler geometry. IV. Weakly Bochner-flat Kähler manifolds. Commun. Anal. Geom. 16(1), 91–126 (2008). MR 2411469 (2010c:32043)
Apostolov, V., Calderbank, D.M.J., Legendre, E.: Weighted K-stability of polarized varieties and extremality of Sasaki manifolds. Adv. Math. 391 (2021). Paper No. 107969, 63. MR 4300921
Apostolov, V., Jubert, S., Lahdili, A.: Weighted \(K\)-Stability and coercivity with applications to Extremal Kähler and Sasaki Metrics (2021). arXiv: 2104.09709
Apostolov, V., Maschler, G., Tønnesen-Friedman, C.W.: Weighted Extremal Kähler metrics and the Einstein-Maxwell geometry of Projective Bundles. Comm. Anal. Geom. 30(4), 689–744 (2022)
Aguilar, M.A., Prieto, C.: Transfers for ramified covering maps in homology and cohomology. Int. J. Math. Math. Sci. (2006). Art. ID 94651, 28. MR 2251716
Boyer, C.P., Calderbank, D.M.J., Tønnesen-Friedman, C.W.: The Kähler geometry of Bott manifolds. Adv. Math. 350, 1–62 (2019). MR 3945589
Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing spinors on Riemannian manifolds, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 124. B.G. Teubner Verlagsgesellschaft mbH, Stuttgart (1991). With German, French and Russian summaries. MR 94a:53077
Boyer, C.P., Galicki, K.: Sasakian geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford (2008). MR MR2382957 (2009c:53058)
Boyer, C., Huang, H., Legendre, E.: An application of the Duistermaat–Heckman theorem and its extensions in Sasaki geometry. Geom. Topol. 22(7), 4205–4234 (2018). MR 3890775
Boyer, C.P., Huang, H., Legendre, E., Tønnesen-Friedman, C.W: Existence and non-existence of constant scalar curvature and extremal Sasaki metrics. arXiv:2210.12203
Boyer, C.P., Huang, H., Legendre, E., Tønnesen-Friedman, C.W.: Reducibility in Sasakian geometry. Trans. Am. Math. Soc. 370(10), 6825–6869 (2018). MR 3841834
Boyer, C.P., Huang, H., Legendre, E., Tønnesen-Friedman, C.W.: Some Open Problems in Sasaki Geometry. Differential Geometry in the Large, pp. 143–168. Cambridge University Press, Cambridge, UK (2021)
Boyer, C.P., Tønnesen-Friedman, C.W.: Iterated \({S}^3\) Sasaki joins and Bott orbifolds. Ann. Fac. Sci. Toulouse Math. 31(3), 837–860 (2022) (6)
Boyer, C.P., Tønnesen-Friedman, C.W.: The Sasaki join, Hamiltonian 2-forms, and constant scalar curvature. J. Geom. Anal. 26(2), 1023–1060 (2016). MR 3472828
Boyer, C.P., Tønnesen-Friedman, C.W.: Sasaki-Einstein metrics on a class of 7-manifolds. J. Geom. Phys. 140, 111–124 (2019). MR 3923473
Boyer C.P., Tønnesen-Friedman, C.W.: The \({S}^3\) Sasaki join construction (2021). J. Math. Soc. Japan 74(4), 1335–1371 (2022)
Boyer, C.P., Tønnesen-Friedman, C.W.: Sasakian geometry on sphere bundles. Differ. Geom. Appl. 77, 101765, 37 (2021). MR 4253896
Boothby, W.M., Wang, H.C.: On contact manifolds. Ann. of Math. (2) 68, 721–734 (1958). MR 22 #3015
Calabi, E.: Extremal Kähler metrics,. In: Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102, pp. 259–290. Princeton University Press, Princeton, N.J. (1982) MR 83i:53088
Chen, X., Cheng, J.: On the constant scalar curvature Kähler metrics (I)—A priori estimates. J. Am. Math. Soc. 34(4), 909–936 (2021). MR 4301557
Chen, X., Cheng, J.: On the constant scalar curvature Kähler metrics (II)—Existence results. J. Am. Math. Soc. 34(4), 937–1009 (2021). MR 4301558
Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. I: approximation of metrics with cone singularities. J. Am. Math. Soc. 28(1), 183–197 (2015). MR 3264766
Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than \(2\pi \). J. Am. Math. Soc. 28(1), 199–234 (2015). MR 3264767
Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \(2\pi \) and completion of the main proof. J. Amer. Math. Soc. 28(1), 235–278 (2015). MR 3264768
Collins, T.C., Székelyhidi, G.: K-semistability for irregular Sasakian manifolds. J. Differ. Geom. 109(1), 81–109 (2018). MR 3798716
Collins, T.C., Székelyhidi, G.: Sasaki-Einstein metrics and K-stability. Geom. Topol. 23(3), 1339–1413 (2019). MR 3956894
Donaldson, S.K.: Extremal metrics on toric surfaces: a continuity method. J. Differ. Geom. 79(3), 389–432 (2008). MR MR2433928 (2009j:58018)
Dancer, A.S., Wang, M.Y.: On Ricci solitons of cohomogeneity one. Ann. Global Anal. Geom. 39(3), 259–292 (2011). MR 2769300
Futaki, A., Ono, H., Wang, G.: Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds. J. Differ. Geom. 83(3), 585–635 (2009). MR MR2581358
Grossberg, M., Karshon, Y.: Bott towers, complete integrability, and the extended character of representations. Duke Math. J 76(1), 23–58 (1994). MR 1301185 (96i:22030)
Guan, D.: Existence of extremal metrics on compact almost homogeneous Kähler manifolds with two ends. Trans. Am. Math. Soc. 347(6), 2255–2262 (1995). MR1285992 (96a:58059)
Haefliger, A.: Groupoïdes d’holonomie et classifiants. Astérisque 116, 70–97 (1984). Transversal structure of foliations (Toulouse, 1982). MR 86c:57026a
He, W.: Scalar curvature and properness on Sasaki manifolds (2018). arXiv:1802.03841
He, W., Li, J.: Geometric pluripotential theory on Sasaki manifolds. J. Geom. Anal. 31(2), 1093–1179 (2021). MR 4215260
Hwang, A.D., Singer, M.A.: A momentum construction for circle-invariant Kähler metrics. Trans. Am. Math. Soc. 354(6), 2285–2325 (2002). (electronic). MR 1885653 (2002m:53057)
Hwang, A.D.: On existence of Kähler metrics with constant scalar curvature. Osaka J. Math. 31(3), 561–595 (1994). MR 1309403 (96a:53061)
Kegel, M., Lange, C.: A Boothby-Wang theorem for Besse contact manifolds. Arnold Math. J. 7(2), 225–241 (2021). textbfMR 4260074
Koiso, N.: On rotationally symmetric Hamilton’s equation for Kähler-Einstein metrics. In: Recent Topics in Differential and Analytic Geometry. Advance Studies Pure Mathematics, vol. 18, pp. 327–337. Academic, Boston, MA (1990) MR 1145263 (93d:53057)
Kollár, J.: Seifert \(G_m\)-bundles (2004). arXiv:math.AG/0404386
Kollár, J.: Einstein metrics on connected sums of \(S^2\times S^3\) . J. Differential. Geom. 77(2), 259–272 (2007). MR 2269781
Koiso, N., Sakane, Y.: Nonhomogeneous Kähler-Einstein metrics on compact complex manifolds. In: Curvature and Topology of Riemannian Manifolds (Katata, 1985). Lecture Notes in Mathematics, vol. 1201, pp. 165–179. Springer, Berlin (1986) MR 859583 (88c:53047)
Legendre, E.: Existence and non-uniqueness of constant scalar curvature toric Sasaki metrics. Compos. Math. 147(5), 1613–1634 (2011). MR 2834736
Legendre, E., Tønnesen-Friedman, C.W.: Toric generalized Kähler-Ricci solitons with Hamiltonian 2-form. Math. Z 274(3–4), 1177–1209 (2013). MR 3078263
Mabuchi, T., Nakagawa, Y.: New examples of Sasaki-Einstein manifolds. Tohoku Math. J. (2) 65(2), 243–252 (2013). MR 3079287
Orlik, P., Wagreich, P.: Seifert \(n\)-manifolds. Invent. Math. 28, 137–159 (1975). MR 361150
Quillen, D.: he spectrum of an equivariant cohomology ring. I, II. Ann. Math. (2) 94, 549–572 (1971). ibid. (2) 94 (1971), 573–602. MR 298694
Smith, L.: Transfer and ramified coverings. Math. Proc. Camb. Philos. Soc. 93(3), 485–493 (1983). MR 698352
Shi, Y., Zhu, X.: Kähler-Ricci solitons on toric Fano orbifolds. Math. Z. 271(3–4), 1241–1251 (2012). MR 3665915
Tian, G., Zhu, X.: Uniqueness of Kähler-Ricci solitons. Acta Math. 184(2), 271–305 (2000). MR 1768112
Wang, X.-J., Zhu, X.: Kähler-Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188(1), 87–103 (2004). MR MR2084775 (2005d:53074)
Yamazaki, T.: A construction of \(K\)-contact manifolds by a fiber join. Tohoku Math. J. (2) 51(4), 433–446 (1999). MR 2001e:53094
Zhu, X.: Kähler-Ricci soliton typed equations on compact complex manifolds with\(C_1(M)>0\). J. Geom. Anal. 10(4), 759–774 (2000). MR 1817785
Acknowledgements
The authors of this paper have benefitted from conversations with Vestislav Apostolov, David Calderbank, Hongnian Huang, Eveline Legendre, and Carlos Prieto.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
\(p_1\) | \(q_1\) | \(p_2\) | \(q_2\) | \(n_1\) | \(n_2\) | \(m_0\) | \(m_\infty \) | m | \(v_0\) | \(v_\infty \) | \({\mathcal I}_{\textbf{n},\textbf{m}}\) |
1 | 2 | −1 | 15 | 5124072 | −740316 | 6438801 | 4797538 | 126251 | 51 | 38 | 89 |
1 | 2 | −1 | 14 | 775675 | −120061 | 972325 | 726685 | 10235 | 95 | 71 | 83 |
1 | 2 | −1 | 13 | 48 | −8 | 60 | 45 | 15 | 4 | 3 | 7 |
1 | 2 | −1 | 12 | 2080161 | −375516 | 2591676 | 1951756 | 31996 | 81 | 61 | 71 |
1 | 2 | −1 | 11 | 1462832 | −288008 | 1815479 | 1373876 | 49067 | 37 | 28 | 65 |
1 | 2 | −1 | 10 | 110483 | −23919 | 136479 | 103887 | 2037 | 67 | 51 | 59 |
1 | 2 | −1 | 9 | 129720 | −31188 | 159330 | 122153 | 5311 | 30 | 23 | 53 |
1 | 2 | −1 | 8 | 80401 | −21730 | 98050 | 75850 | 1850 | 53 | 41 | 47 |
1 | 2 | −1 | 7 | 25944 | −8004 | 31349 | 24534 | 1363 | 23 | 18 | 41 |
1 | 2 | −1 | 6 | 124527 | −44733 | 148629 | 118141 | 3811 | 39 | 31 | 35 |
1 | 2 | −1 | 5 | 59072 | −25376 | 69296 | 56303 | 4331 | 16 | 13 | 29 |
1 | 2 | −1 | 4 | 525 | −280 | 600 | 504 | 24 | 25 | 21 | 23 |
1 | 2 | −1 | 3 | 1440 | −1008 | 1575 | 1400 | 175 | 9 | 8 | 17 |
1 | 2 | −1 | 2 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 2 | 1 | 2 | 51 | 51 | 85 | 45 | 5 | 17 | 9 | 13 |
1 | 2 | 1 | 3 | 10416 | 7224 | 15996 | 9331 | 1333 | 12 | 7 | 19 |
1 | 2 | 1 | 4 | 31217 | 16492 | 46004 | 28196 | 1484 | 31 | 19 | 25 |
1 | 2 | 1 | 5 | 8208 | 3496 | 11799 | 7452 | 621 | 19 | 12 | 31 |
1 | 2 | 1 | 6 | 30015 | 10701 | 42435 | 27347 | 943 | 45 | 29 | 37 |
1 | 2 | 1 | 7 | 54808 | 16796 | 76570 | 50065 | 2945 | 26 | 17 | 43 |
1 | 2 | 1 | 8 | 51389 | 13806 | 71154 | 47034 | 1206 | 59 | 39 | 49 |
1 | 2 | 1 | 9 | 552 | 132 | 759 | 506 | 253 | 3 | 2 | 5 |
1 | 2 | 1 | 10 | 1112447 | 239659 | 1521101 | 1021013 | 20837 | 73 | 49 | 61 |
1 | 2 | 1 | 11 | 36000 | 7056 | 49000 | 33075 | 1225 | 40 | 27 | 67 |
1 | 2 | 1 | 12 | 456837 | 82128 | 619440 | 420080 | 7120 | 87 | 59 | 73 |
1 | 2 | 1 | 13 | 3134336 | 520384 | 4236251 | 2884256 | 90133 | 47 | 32 | 79 |
1 | 2 | 1 | 14 | 466923 | 72013 | 629331 | 429939 | 6231 | 101 | 69 | 85 |
1 | 2 | 1 | 15 | 5522472 | 795204 | 7425486 | 5087833 | 137509 | 54 | 37 | 91 |
TABLE: This gives a sample of Kähler−Einstein orbifold solutions. See Example 4.3.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Boyer, C.P., Tønnesen-Friedman, C.W. (2023). Constant Scalar Curvature Sasaki Metrics and Projective Bundles. In: Cheltsov, I., Chen, X., Katzarkov, L., Park, J. (eds) Birational Geometry, Kähler–Einstein Metrics and Degenerations. BGKEMD BGKEMD BGKEMD 2019 2019 2019. Springer Proceedings in Mathematics & Statistics, vol 409. Springer, Cham. https://doi.org/10.1007/978-3-031-17859-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-17859-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17858-0
Online ISBN: 978-3-031-17859-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)